
Supplemental Materials 

Supplemental Material 1: Natural abundance correction 

Definitions 

m0 The nominal mass of the compound ion, rounded to the nearest integer, with only the most 

abundant isotopes (e.g. H1
1 , C6

12 , N7
14 )  

mi The mass of the compound ion incremented by i above the nominal mass, due to 

incorporation of i isotopes with a higher mass than the most abundant (e.g. H1
2 , C6

13 , N7
15 )  

Ai The recorded absolute intensity (peak area) in the mass spectrum of a compound ion at 

𝑚/𝑧=mi 

Isotopologues Molecular species that have the same chemical formula, but differ in isotopic content and 

therefore in mass 

Tracer Here: stable-isotope labeled tracer, a compound in which one or more atoms have been 

replaced by a stable isotope, which allows the compound and its biochemical products to 

be distinguished from endogenous metabolites 

ID Isotopologue distribution, consisting of the fractional contributions of the masses of interest 

of the particular compound ion 

K The representation of the measured ID as a vector 

M The representation of the ID as a vector, after correction for natural abundance of isotopes 

Ki Element of the vector K representing the measured fractional abundance of the 

isotopologue with mass mi  



Mi Element of the vector M representing the fractional abundance of the isotopologue with 

mass mi after correction of Ki for the contribution of naturally occurring isotopes 

L  The correction matrix that converts the measured fractional abundance vector K into the 

corrected matrix M 

𝐿𝑗
𝑖   Element 𝐿𝑗

𝑖  of the correction matrix L, denoting the probability that an isotopologue in 

which i atoms were substituted for their corresponding stable isotope from the tracer, is 

heavier by an additional j mass units due to incorporation of naturally occurring isotopes.  

General procedure 

An isotopologue of mass mi has a mass increment i above the nominal mass of the compound. The mass 

increment can originate from the tracer or from naturally occurring isotopes. A correction is necessary to 

transform the measured isotopologue distribution (ID) into the distribution that should have been observed 

had there been no naturally occurring isotopes. The method described here is based on the measured ID of 

the unlabeled, baseline sample that was obtained prior to addition of the stable isotope labeled tracer. What 

is new, at least to our knowledge, is the use of this measured ID of the baseline sample to reconstruct the 

skewed correction matrix L (1; 2). We developed this method for compounds with a low fractional 

enrichment (typically less than 5%) in combination with a high molecular mass, such as metabolites that 

have been derivatized for GC-MS measurements. In these cases the generally accepted deviation of the 

enrichment of the baseline sample after correction (± 0.4%), based on the default error for GC-MS 

measurements (3), would be substantial relative to the enrichment due to label incorporation. The general 

part of the procedure works as follows. 

The vector K is the measured ID, defined as: 

𝑲 =

[
 
 
 
 
𝐾0
𝐾1
𝐾2…
𝐾𝑛

 

]
 
 
 
 

 



in which n is the number of atoms that can be substituted with a heavy isotope, and:  

𝐾𝑖 = 𝐴𝑖 ∑𝐴𝑖

𝑛

𝑖=0

⁄  

Analogously a vector M of corrected fractional abundances is defined as:   

𝑴 =

[
 
 
 
 
𝑀0
𝑀1
𝑀2…
𝑀𝑛

 

]
 
 
 
 

 

in which element Mi represents the fractional abundance of the isotopologue with mass mi after correction 

for natural isotope abundance, i.e. the fractional abundance that can be attributed to the tracer. M is 

calculated from K according to: 

𝑲 = 𝑳 ∙ 𝑴 

in which  

𝑳 =

[
 
 
 
 
 
𝐿0
0 0 0 … 0

𝐿1
0 𝐿0

1 0 … 0

𝐿2
0 𝐿1

1 𝐿0
2 … 0

… … … … 0
𝐿𝑛
0 𝐿𝑛−1

1 𝐿𝑛−2
2 … 𝐿0

𝑛]
 
 
 
 
 

 

The elements 𝐿𝑗
𝑖  of the correction matrix L denote the probability that an isotopologue in which i atoms 

were incorporated from the stable-isotope labeled substrate, is heavier by an additional j mass units due 

incorporation of naturally occurring isotopes.  

The elements of the first column of L (𝐿𝑗
0) denote the probabilities that measured isotopologues are 

exclusively labeled by naturally occurring isotopes, as would be the case in the baseline sample prior to 

addition of the tracer. When one atom has been replaced by a heavy isotope from the tracer, the number of 

atoms of the compound that can be substituted with a naturally occurring isotope is n-1. If i atoms are 



substituted by isotopes originating from the labeled substrate, then the other n-i atoms have a probability of 

being labeled by naturally occurring isotopes. Since this probability depends on the number of the other n-

i unlabeled atoms, the L matrix becomes ‘skewed’ (1; 2), i.e. the columns are not just shifted relative to 

each other, but the probabilities differ, i.e. 𝐿𝑗
𝑖 ≠ 𝐿𝑗

𝑖+1. 

If matrix L is known, vector M is calculated as follows. 

Given: K = L·M. Then: L-1·K = L-1·L·M and thus: L-1·K = M. Hence, to solve M, matrix L is inverted and 

the resulting matrix L-1 multiplied to vector K.  

Most often, matrix L is calculated from the known abundances of naturally occurring isotopes (4). In cases 

with a high enrichment with isotopes from the tracer, this approach is sufficiently accurate. It may become 

problematic for large molecules with a low isotope enrichment from the tracer. In these cases the generally 

accepted deviation of the enrichment of the baseline sample after correction (± 0.4%) would be substantial 

relative to the enrichment due to label incorporation. Then, the baseline sample provides an independent 

measurement of the actual ID due to naturally occurring isotopes. There are, however, no measured IDs of 

the compound with i tracer isotopes atoms incorporated, due to a lack of such standards. This implies that 

there is only information for the first column of L. Below, we derive a method to construct the skewed L 

matrix, based on the measured baseline sample.  

Constructing the L matrix from the measured baseline samples 

To compute the skewed L matrix from the measured ID of the baseline sample, we were inspired by (5), 

who derived the ID (vector K) for a molecule composed of two chemical fragments X and Y with mutually 

independent isotopologue distributions. The isotopologue distribution (K0, K1, K2, …) of a molecule 

consisting of a fragments X with isotopologue distribution (p0, p1, p2, …) and a fragment Y with 

isotopologue distribution (q0, q1, q2, …) can be computed according to: 



[
 
 
 
 
 
𝑝0 0 0 … …
𝑝1 𝑝0 0 … …
𝑝2 𝑝1 𝑝0 … …
𝑝3 𝑝2 𝑝1 … …
… … … … …
𝑝𝑛 𝑝𝑛−1 𝑝𝑛−2 … …]

 
 
 
 
 

∙

[
 
 
 
 
𝑞0
𝑞1
𝑞2
…
…]
 
 
 
 

=

[
 
 
 
 
𝐾0
𝐾1
𝐾2
…
… ]
 
 
 
 

 

Note that here we do not have a skewed matrix: the columns containing p0 – pn are just shifted relative to 

each other, as the equation describes different combinations of the same fragments. We used the same 

principle here. The measured isopologue was considered to consist of two parts i.e. Ti* and R-i. Part Ti*, the 

‘tracer part of the compound’, accounts for the incorporated isotopes from the tracer, while part R-i, the ‘rest 

of the molecule’, accounts for the incorporation of naturally occurring isotopes of all atoms in the rest of 

the molecule. This tracer part Ti* is not a chemical fragment of the molecule, but just the total of the heavy 

elements from the tracer. The asterisk denotes that this is the labeled version of Ti*, since we will later 

distinguish it from the equivalent part of the molecule Ti without the tracer isotopes incorporated. The 

natural isotopologue distribution vector R-i of the fragment R-i can be written as: 

𝑹−𝒊 =

[
 
 
 
 
 
𝑅0
−𝑖

𝑅1
−𝑖

𝑅2
−𝑖

…
𝑅𝑛−𝑖
−𝑖 ]
 
 
 
 
 

 

in which element 𝑅𝑗
−𝑖 denotes the probability that part R-i lacking i labeled atoms, has a mass increment of 

j due to incorporation of naturally occurring isotopes. The correction matrix L can now be constructed 

according to: 

𝑳 =

[
 
 
 
 
 
𝑅0
0 0 0 … 0

𝑅1
0 𝑅0

−1 0 … 0

𝑅2
0 𝑅1

−1 𝑅0
−2 … 0

… … … … 0
𝑅𝑛
0 𝑅𝑛−1

−1 𝑅𝑛−2
−2 … 𝑅0

−𝑛]
 
 
 
 
 

 

The first column R0 (i = 0) is the isotopologue distribution of the unlabeled baseline sample prior to addition 

of the tracer (vector K0). The key question is how to identify the isotopologue distributions R-i for i ≠ 0.  



To obtain R-i we have to start with the ID of the baseline sample. The ID of the unlabeled compound in a 

part Ti (the unlabeled equivalent of Ti*) and a part R-i. Suppose that we have a compound XkYlZm with n 

atoms X that can be substituted for a stable isotope from the tracer. The compound can be perceived to 

consist of a part Ti, equivalent to Xi, and a remainder R-i, equivalent to Xk-iYlZm, with i ∈ [1 – n]. The 

probability 𝑠𝑗
𝑖 that Ti contains j heavy atoms due to natural abundance, is calculated according to: 

𝑠𝑗
𝑖 =

𝑖!

𝑗! ∙ (𝑖 − 𝑗)!
∙ (𝑡0)

𝑖−𝑗 ∙ (𝑡1)
𝑗 

in which t1 is the known fractional natural abundance of the stable isotope of atom X and t0 = 1 - t1. Since 

the isotopologue distributions of Ti and R-i are mutually independent, according to Lee (5) we can write: 

 

[
 
 
 
 
 𝑠0
𝑖 0 0 … 0…

𝑠1
𝑖 𝑠0

𝑖 0 … 0…

𝑠2
𝑖 𝑠1

𝑖 𝑠0
𝑖 … 0…

… … … … 0…
𝑠𝑖
𝑖 𝑠𝑖−1

𝑖 𝑠𝑖−2
𝑖 … 𝑠0

𝑖 ]
 
 
 
 
 

⏟                  
𝑻𝒊

∙

[
 
 
 
 
 𝑅0

−𝑖

𝑅1
−𝑖

𝑅2
−𝑖

…
𝑅𝑛−𝑖
−𝑖
]
 
 
 
 
 

⏟  

=

𝑹−𝒊

[
 
 
 
 
 𝐾0
0

𝐾1
0

𝐾2
0

…
𝐾𝑛
0
]
 
 
 
 
 

⏟
𝑲𝟎

 

in which vector K0 denotes the measured ID of the baseline sample. Thus, for the unlabeled sample we can 

dissect the measured isotopologue vector K0 into: 

𝑻𝒊 ∙ 𝑹−𝒊 = 𝑲𝟎 

Therefore: [𝑻𝒊]
−𝟏
∙ 𝑻𝒊 ∙ 𝑹−𝒊 = [𝑻𝒊]

−𝟏
∙ 𝑲𝟎 and thus: 𝑹−𝒊 = [𝑻𝒊]

−𝟏
∙ 𝑲𝟎. Hence, to solve 𝑹−𝒊, matrix 𝑻𝒊 is 

inverted and multiplied to vector 𝑲𝟎.  

This calculation is repeated n times, each time with a new matrix 𝑻𝒊 to calculate 𝑹−𝒊 for each i. In this way 

n vectors 𝑹−𝒊 with elements 𝑅𝑗
−𝑖 are calculated. The vectors K0 and R-i are then inserted as columns to form 

the L matrix with 𝐿𝑗
𝑜 = 𝐾𝑗

0 and 𝐿𝑗
𝑖  = 𝑅𝑗

−𝑖. 

In the current study a deuterium label has been used and the intensity of isotopologues with masses m0 – m4 

have been measured. Therefore, X = 𝐻1
1  and n = 4, so i ∈ [0 – 4]. The fractional natural abundance of 𝐻1

2  



has been reported to be 0.0115 % (6), thus t1 = 0.000115. In the accompanying Excel sheet (Supplemental 

File 1) the calculations are done for [6,6-2H2]-glucose measured by GC-MS as the penta-acetate derivative. 

Finally, why is this method more appropriate for samples with a very low label enrichment in large 

molecules? If we derive the L matrix from natural isotope abundances (the state-of-the art method), for a 

large molecule small errors in individual isotope abundances may accumulate to a relatively large error. In 

the here described method, the natural abundances are used only to compute the ID of the small part Ti and 

thus the cumulative error is much smaller. We checked that in our dataset the state-of-the-art method gave 

rise to deviations of less than 0.4% in the baseline sample, indicating that the quality of the measurements 

was good. 

Supplemental Material 2: Analytical solutions of simple tracer model 

 

Figure A1: Two-compartment model of tracer kinetics 

To derive general characteristics of the tracer kinetics, the compartment model depicted in Figure A1 was 

solved analytically. q1 and c2 represent the amount and concentration of the tracer in compartment 1 and 2 

respectively. In the case of an oral gavage, q1 represents a gastrointestinal compartment (µmol·kg-1-) and c2 

the plasma compartment (mM). Rate constant kL refers to the loss of tracer before it reaches the plasma 

compartment. 

The system is described by the following set of ordinary differential equations (ODE, cf. Research Design 

and Methods section for a motivation of the model equations): 

𝑑𝑞1

𝑑𝑡
= −(𝑘1 + 𝑘𝐿) ∙ 𝑞1     (Eq. S2.1) 



𝑑𝑐2

𝑑𝑡
=
𝑘1∙𝑞1

𝑉𝑜𝑙
−𝑘2 ∙ 𝑐2     (Eq. S2.2) 

In matrix notation, this is equivalent to: 

𝑑

𝑑𝑡
[
𝑞1
𝑐2
] = [

−(𝑘1 + 𝑘𝐿) 0
+𝑘1/𝑉𝑜𝑙 −𝑘2

] ∙ [
𝑞1
𝑐2
]     (Eq. S2.3) 

which can be written as:   

𝒙̇ = 𝑨 ∙ 𝒙     (Eq. S2.4) 

This has the general solution: 

𝒙 = 𝑠1 ∙ 𝑒
𝜆1𝑡 ∙ 𝒖1 + 𝑠2 ∙ 𝑒

𝜆2𝑡 ∙ 𝒖2     (Eq. S2.5) 

in which 1 and 2 are the eigenvalues of matrix A, and u1 and u2 the corresponding eigenvectors.  

The eigenvalues of A are calculated from: 

𝑑𝑒𝑡(𝑨 − 𝜆𝑰) = 0     (Eq. S2.6) 

and:     (𝑨 − 𝜆𝑰) ∙ 𝒖 = 𝟎     (Eq. S2.7)  

This yields eigenvalues  1 = -(k1+kL) and  2 = -k2 with eigenvectors: 

𝒖𝟏 = [

1
𝑘1

𝑉𝑜𝑙·(𝑘2−𝑘1−𝑘𝐿)
] and 𝒖𝟐 = [

0
1
]     (Eq. S2.8) 

This leads to:    𝑞1 = 𝑠1 ∙ 𝑒
−(𝑘1+𝑘𝐿)𝑡     (Eq. S2.9) 

𝑐2 = 
𝑠1

𝑉𝑜𝑙
∙

𝑘1

𝑘2−𝑘1−𝑘𝐿
∙ 𝑒−(𝑘1+𝑘𝐿)𝑡 + 𝑠2 ∙ 𝑒

−𝑘2𝑡      (Eq. S2.10) 

With:    q1(0) = q1,0 and c2(0) = 0, the solution becomes:  

𝑞1 = 𝑞1,0 ∙ 𝑒
−(𝑘1+𝑘𝐿)𝑡     (Eq. S2.11) 

𝑐2 = 
𝑞1,0

𝑉𝑜𝑙
∙

𝑘1

𝑘2−𝑘1−𝑘𝐿
∙ 𝑒−(𝑘1+𝑘𝐿)𝑡 −

𝑞1,0

𝑉𝑜𝑙
∙

𝑘1

𝑘2−𝑘1−𝑘𝐿
∙ 𝑒−𝑘2𝑡     (Eq. S2.12) 



In pharmacokinetics, the bioavailability of the tracer, i.e. the fraction that reaches the plasma compartment, 

is computed as the ratio between the area under the c2 curve for an oral versus an intravenous administration.  

For the oral administration as solved above, the area under the curve for c2 becomes: 

𝐴𝑈𝐶𝑜𝑟𝑎𝑙 = ∫ 𝑐2(𝑡)𝑑𝑡
∞

0

=
𝑞1,0
𝑉𝑜𝑙

∙
𝑘1

𝑘2 − 𝑘1 − 𝑘𝐿
 ∫ (𝑒−(𝑘1+𝑘𝐿)𝑡 − 𝑒−𝑘2𝑡) 𝑑𝑡 

∞

0

 

= (
𝑞1,0

𝑉𝑜𝑙·𝑘2
) ∙

𝑘1

𝑘1+𝑘𝐿
      (Eq. S2.13) 

Had the same amount of tracer been administered intravenously (IV), i.e. directly into the plasma 

compartment, the kinetics would be described by: 

𝑑𝑐2

𝑑𝑡
= −𝑘2 ∙ 𝑐2     (Eq. S2.14) 

with:        𝑐2(0) =
𝑞1,0

𝑉𝑜𝑙
     (Eq. S2.15) 

which leads to: 

𝑐2 = 
𝑞1,0

𝑉𝑜𝑙
∙ 𝑒−𝑘2𝑡     (Eq. S2.16) 

Now the area under the curve becomes: 

𝐴𝑈𝐶𝐼𝑉 = ∫ 𝑐2(𝑡)𝑑𝑡
∞

0
=
𝑞1,0

𝑉𝑜𝑙
 ∫ 𝑒−𝑘2𝑡𝑑𝑡 
∞

0
=

𝑞1,0

𝑉𝑜𝑙·𝑘2
     (Eq. S2.17) 

And thus: 

𝐹 =
𝐴𝑈𝐶𝑜𝑟𝑎𝑙

𝐴𝑈𝐶𝐼𝑉
=

𝑘1

𝑘1+𝑘𝐿
     (Eq. S2.18) 

This is a logical outcome, since it corresponds to the fraction of q1 that is transported to compartment 2. 

Based on the analytical solution above, equation S2.12 describing the tracer kinetics can be simplified to: 

𝑐2(𝑡) =  𝐶 ∙ (𝑒
−𝑘2𝑡 − 𝑒−𝑘𝑎𝑡)     (Eq. S2.19) 

in which:   𝑘𝑎 = 𝑘1 + 𝑘𝐿     (Eq. S2.20) 



and thus:    𝑘1 = 𝑘𝑎 ∙ 𝐹     (Eq. S2.21) 

𝐶 = −
𝑞1(0)

𝑉𝑜𝑙
∙

𝑘1

𝑘2−𝑘1−𝑘𝐿
= −

𝑞1(0)

𝑉𝑜𝑙
∙
𝑘𝑎∙𝐹

𝑘2−𝑘𝑎
      (Eq. S2.22) 

Thus, if C, ka and k2 are fitted from the data, the apparent distribution volume Vol can be calculated from 

the bioavailability F or vice versa. We are aware that we have derived here only classical pharmacokinetics 

equations, but it clarified (1) that the ka fitted to tracer kinetics is only an apparent absorption rate constant, 

while the actual rate constant k1 equals ka·F, and (2) what is the basis for the calculation of the apparent 

volume Vol from F. The latter is used to express the endogenous glucose production (EGP) in mol·min-

1·kg-1. 

  



Supplemental Material 3: Data fitting and identifiability 

 

Figure A2: Correlations between all 3 parameters obtained from the tracer fit for all animals, with ka with an upper 

bound of 0.22 (A, B, C). AIC values (D) derived from fitting of data values for a fixed C ranging from 0 and 15 for 

the mean values per time point. AIC (E), k2 (F) and ka (G) values derived in which a random variation was included 

in the mean values according to the distribution of the original dataset (H). Spearman correlation coefficient r between 

ka and k2 for model fit with different fixed values for C. Data were randomly generated according to mean and 

distribution for all time points (H). AIC comparison for model fits with the use of data from all animals. C was let to 

vary or was fixed at 4.1 or 3.4 (I). Expected distribution for ka (J) and k2 (K) from 1,000 fits based on the distribution 

of data randomly generated according to mean and distribution for all time points. 



To obtain C, ka and k2, the time course of tracer data for each animal (mM) was fitted to equation 11 

[𝑞2(𝑡) =  𝐶 ∙ (𝑒
−𝑘2𝑡 − 𝑒−𝑘𝑎𝑡)]. Not all three parameters were identifiable from the tracer data due to 

collinearity (Fig. A2A-C). Given the intrinsic biological information contained in ka and k2, C was selected 

to be fixed at 3.4 for the fits, based on (i) the lowest AIC (Akaike’s Information Criterion for model 

selection) for data mean per time point (Fig. A2D, E), and on (ii) a Spearman correlation coefficient between 

ka and k2 lower than 0.5, based on 1 000 simulations of synthetic data (Fig. A2H). These assumptions did 

not interfere with the obtained AIC for the data fit (Fig. A2I). The constant ka was constrained within the 

95% CI of the median (0.047 – 0.22 min-1) to avoid biologically inconsistent outliers, based on the expected 

distribution from synthetic data (Fig. A2J, K). The constant k2 was not constrained. Within the region of C 

values resulting in low AIC, ka and k2 did not heavily depend on the choice of C (Fig. A2F, G). 

The lack of correlation between ka and k2 (Fig A3A) implies that both could be independently identified. 

The use of a more complex model including an extra distribution compartment and consequently a second 

elimination term did not result in better fits of the data and impaired identification of the elimination 

constant(s) (Fig. A3B, C). This is in agreement with analysis of human OGTT data, in which even more 

time points were taken due to the larger blood volume, and yet one elimination compartment was sufficient 

to fit the data accurately (7). 

 

Figure A3: Scatter plot for ka and k2 values for fits with fixed C at 3.4 and applied boundaries for ka (A). Comparison 

for all animals in the dataset when fitting tracer data using either 1 elimination term [𝑞2(𝑡) =  𝐶 ∙ (𝑒
−𝑘2𝑡 − 𝑒−𝑘𝑎𝑡)] or 

2 elimination terms [𝑞2(𝑡) =  𝐶1 ∙ 𝑒
−𝑘2

1·𝑡 + 𝐶2 ∙ 𝑒
−𝑘2

2·𝑡 − (𝐶1 + 𝐶2) ∙ 𝑒
−𝑘𝑎𝑡] for AIC (B) and for elimination constants 

(C). A second elimination constant did not improve the AIC. Moreover, the second elimination constant could not be 

estimated, as is obvious from the large spread in the fitted values. 



Supplemental figures 

Figure S1: Average of running wheel activity in number of revolutions per hour. Data represent the average of all 

animals per experimental group on a given month (specified per panel). The diet group (LFD or HFD) is directly 

followed by a number, which indicates the experimental age group, as indicated in the materials and methods section. 

Dark and light phases are indicated, as well as the period of time in which the OGTT was conducted. Data are shown 

as mean ± SD, n = 16-26. 
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Figure S2: Comparison of the rate of glucose disposal (Rd) at basal state between the tracer OGTT and steady-state 

intravenous infusion (IV-SS) data, age matched. The dashed line represents the identity line (y=x). Scatter plot of data 

plotted as mean ± SEM, n = 6-8. 

 



 

Figure S3: Individual fits for unlabeled glucose curves. Above each graph the mouse IDs are shown. Curves that 

showed an absorption followed by a clearance phase (red) were used for the EGP calculation. Curves in gray did not 

show the expected behavior and therefore were not included in the dataset to compute the EGP. This was done due to 

the high uncertainty in the obtained phenomenological constants for the unlabeled glucose in the absence of a clearance 

phase. In total, 37 animals were excluded, which were distributed among different groups. 
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Figure S4: Fasting glucose values for each group. Data are shown as mean ± SEM, n = 6-8. 

 



Figure S5: EGP* time courses in mM·min-1 (A). Each column represents a different diet and activity group, whereas 

each row represents a different age. LFD: low-fat diet, HFD: high-fat high-sucrose diet, Ctrl: sedentary mice, RW: 

mice submitted to voluntary running wheel. Mean EGP (line) ± SEM (shaded area) is shown per experimental group. 

Steady-state EGP* values in mM·min-1 (B) calculated from the curves (mean ± SEM). Average EGP* values in 

mM·min-1 (C) obtained from OGTT timeframe (5-120 min). Comparison of the steady-state EGP at basal state 

between the tracer OGTT and SS-IV datasets, age matched (D). The dashed line represents the identity line (y=x). 

Scatter plot of data plotted as mean ± SEM, n = 2-8. 

 

Figure S6: IS-L calculated from EGP in mM·min-1 (average from 5-120 minutes was used) (A). Data are shown as 

mean ± SEM, n = 2-8. Correlations between HOMA-IR and IS-P (B) or IS-L (C), Pearson correlation coefficients (r) 

are shown. Scatter plot of data plotted as mean ± SEM, n = 2-8. 



 

Figure S7: Correlation between CPT1B and oxidative capacity in the skeletal muscle, with the use of palmitoyl-CoA, 

carnitine and malate as substrates (A). Correlation between CPT1A and oxidative capacity in the liver, with the use 

of palmitoyl-CoA, carnitine and malate as substrates (B). Comparison between CPT1B levels (C) and oxidative 

capacity (palmitoyl-CoA, carnitine and malate as substrates) (D) in the skeletal muscle of mice from this present 

cohort (data from Stolle et al., 2018 (8), young = 4 months, old = 21 months, C57BL/6JOlaHsd background) and from 

a previous cohort (data from (9), young = 6 months, old = 21 months, C57BL/6J background). Correlation between 

CPT1B content and IS-P for LFD groups (E). Data are plotted as mean ± SEM, n = 4-8. 
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