
The Broader Economic Value of Treatment for DME

Appendix

1. Overview

We developed a microsimulation based on data from the Health and Retirement Study (HRS; a nationally representative longitudinal dataset of Americans aged 51 and older) that predicts outcomes such as life expectancy, QALY, employment, disability, and self-reported vision (SRV). Because clinical trial data in ophthalmology reports outcomes in terms of visual acuity (VA), we required a mapping from VA to SRV. We used the National Health and Nutrition Examination Study (NHANES; a nationally representative survey of Americans) which has data for both VA and SRV to generate a mapping between these outcomes. We used this mapping to estimate the SRV treatment effects for DRCR clinical trials. eeFigure 1 provides a conceptual framework of our modeling approach.

2. Future Elderly Model

2.1. Summary of the Future Elderly Model

The Future Elderly Model (FEM) is a microsimulation model originally developed out of an effort to examine health and health care costs among the elderly Medicare population (age 65+). A description of the previous version of the model can be found in Goldman et al. (2004).[1] The original work was founded by the Centers for Medicare and Medicaid Services and carried out by a team of researchers composed of Dana P. Goldman, Paul G. Shekelle, Jayanta Bhattacharya, Michael Hurd, Geoffrey F. Joyce, Darius N. Lakdawalla, Dawn H. Matsui, Sydne J. Newberry, Constantijn W. A. Panis and Baoping Shang.

Since then, various extensions have been implemented to the original model. The most recent version now projects health outcomes for all Americans aged 51 and older and uses the HRS as a host dataset rather than the Medicare Current Beneficiary Survey (MCBS). The work has also been extended to include economic outcomes such as earnings, labor force participation and pensions. This work was funded by the National Institute on Aging through its support of the RAND Roybal Center for Health Policy Simulation (P30AG024968), the Department of Labor through contract J-9-P-2-0033, the National

Institutes of Aging through the R01 grant "Integrated Retirement Modeling" (R01AG030824) and the MacArthur Foundation Research Network on an Aging Society. A full technical appendix for that project is available here: <u>https://healthpolicy.box.com/v/AD-FEM-Appendix</u>.

2.2. Extending FEM to Incorporate Vision

2.2.1. Vision Measures

For this project we expanded the FEM to incorporate measures of vision from the HRS. Self-reported vision (SRV) is assessed each wave, and analogous questions are asked for near and distance vision. We focused on overall SRV because our implementation of the DME treatment effects relies on a mapping from visual acuity (VA) to SRV derived from the NHANES, which also uses overall SRV. eeTable 1 provides a summary of SRV questions for the HRS and NHANES and the final SRV categories used in the FEM.

Dataset	Question	Response	F	EM: Final S	RV categorie	es
		options		(Original re	esponse %)	
			Excellent	Good	Fair	Poor
NHANES (1999-2008)	At the present time, would you say your eyesight, with glasses or contact lenses if you wear them is	Excellent Good Fair Poor Very Poor	Excellent (24.3%)	Good (49.5%)	Fair (20.4%)	Poor (4.5%); Very Poor (1.3%)
HRS* (Waves 5-9)	Rate your eyesight while wearing glasses or corrective lenses as usual	Excellent Very Good Good Fair Poor	Excellent (9.3%); Very Good (25.5%)	Good (42.5%)	Fair (16.3%)	Poor (5.9%); Blind (0.5%)
HRS* (Waves 9-12)	Rate your eyesight while wearing glasses or corrective lenses as usual	Excellent Very Good Good Fair Poor	Excellent (8.3%); Very Good (25.3%)	Good (41.4%)	Fair (18.3%)	Poor (6.4%); Blind (0.3%)

eTable 1. Summary of Self-Reported Vision and Response Standardization

*While not an explicit response option, <1% of the sample voluntarily told the interviewer that their SRV was blind.

2.2.2. Vision Transition Model

The estimated model coefficients for the vison models (people under 65, people 65 and older who have had cataract surgery, and people 65 and older who have not had cataract surgery) are provided in eTable2, and the estimated coefficients on the SRV variables in the non-vision outcome models are in eTable3.

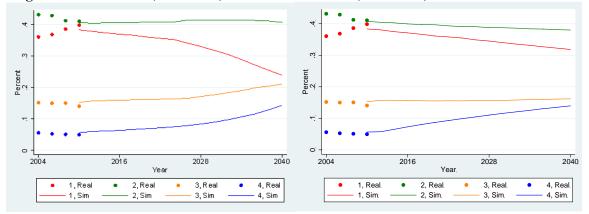
	Under 65	Over 65,	Over 65, no
		cataract surgery	cataract surgery
Good vision (lag)	0.3716	0.4826*	0.8800***
	(0.2473)	(0.2738)	(0.0566)
Fair vision (lag)	0.7862**	1.2250***	1.6559***
	(0.3137)	(0.2959)	(0.0776)

Poor vision (lag)	0.3995	1.5740***	2.3562***
	(0.5553)	(0.3893)	(0.1464)
Good vision (lag) x age less than 65 (lag)	0.0096**		
	(0.0043)		
Fair vision (lag) x age less than 65 (lag)	0.0138**		
	(0.0055)		
Poor vision (lag) x age less than 65 (lag)	0.0336***		
	(0.0097)		
Age less than 65 (lag)	-0.011***		
8	(0.0033)		
Good vision (lag) x age 65-74 (lag)	()	0.0002	-0.007
		(0.0341)	(0.0097)
Fair vision (lag) x age 65-74 (lag)		-0.042	0.0194
		(0.0369)	(0.0178)
Poor vision (lag) x age 65-74 (lag)		-0.025	-0.001
		(0.0481)	(0.0036)
Good vision (lag) x age 75+ (lag)		-0.008	0.0028
		(0.0179)	(0.0043)
Fair vision (lag) x age 75+ (lag)		0.0072	0.0307
run vision (lug) x ugo 73+ (lug)		(0.0190)	(0.0061)
Poor vision (lag) x age 75+ (lag)		0.0097	0.0197***
1 oor vision (lag) x age 75+ (lag)		(0.0229)	(0.0056)
Age 65-74 (lag)		0.0139	0.0178***
Age 05-74 (lag)		(0.0293)	(0.0028)
Age 75+ (lag)		0.0243	-0.043***
Age $13+(lag)$		(0.0153)	(0.0140)
Male indicator	-0.031**	0.0706	0.1825***
Wate indicator			
D = = = / - (1 = =	(0.0158)	(0.0490) 0.3006***	(0.0206) 0.2366***
Race/ethnicity: Black			
	(0.0197)	(0.0782)	(0.0266)
Race/ethnicity: Hispanic	0.3955***	0.3529***	0.1354***
x	(0.0235)	(0.0949)	(0.0187)
Less than high school education	0.2029***	0.1390**	-0.132***
	(0.0258)	(0.0656)	(0.0155)
College education	-0.214***	-0.117**	0.0039***
~ ~ ~ ~	(0.0175)	(0.0533)	(0.0174)
Cancer (lag)	0.0291	-0.113*	0.0388
	(0.0304)	(0.0596)	(0.0228)
Diabetes (lag)	0.0766***	-0.008	0.0056*
	(0.0280)	(0.0780)	(0.0014)
Years since diabetes diagnosis (lag)	0.0084***	0.0132***	0.0898***
	(0.0021)	(0.0046)	(0.0159)
Heart attack (lag)	0.1334***	0.0864	0.0560***
	(0.0255)	(0.0539)	(0.0149)
Hypertension (lag)	0.0980***	0.0063	0.1636***
	(0.0170)	(0.0515)	(0.0227)
Lung (lag)	0.2914***	0.0661	0.0869***
	(0.0321)	(0.0750)	(0.0226)
Stroke (lag)	0.1420***	0.2364***	-0.063***
	(0.0409)	(0.0799)	(0.0159)

Smoke (lag)	0.1836***	-0.007	0.0987***
	(0.0195)	(0.0836)	(0.0245)
High cholesterol (lag)	-0.084***	0.0213	0.0053
	(0.0189)	(0.0506)	(0.0145)
Cut1	-0.2351	0.6077	0.4711
Cut2	1.2417	1.8632	1.9256
Cut3	2.4614	2.6943	3.0254
N	22,222	2,326	28,212

Notes: Coefficients from an ordered probit model with SRV (1=Excellent; 2=Good; 3=Fair; 4=Poor) as the dependent variable using HRS waves 9-12. Standard errors in parenthesis. Excluded SRV category for covariates=Excellent. We considered models that included both one period and two period lags of SRV and found that the coefficients on the two period lag were statistically insignificant. Significance: ***p<0.01; **p<0.05; *p<0.1

Table 5. Effect of SKV on Non-Vision Outcomes								
	Employed	Claim	Mortality	ADL status	IADL status	HUI3		
		disability						
Good vision	-0.085***	0.2707***	0.0961***	0.1864***	0.1731***	-0.066***		
(lag)	(0.0140)	(0.0312)	(0.0229)	(0.0156)	(0.0195)	(0.0145)		
Fair vision	-0.245***	0.4987***	0.1983***	0.4465***	0.4302***	-0.113***		
(lag)	(0.0199)	(0.0372)	(0.0274)	(0.0190)	(0.0229)	(0.0210)		
Poor vision	-0.641***	0.7701***	0.3575***	0.7662***	0.9019***	-0.194***		
(lag)	(0.0370)	(0.0517)	(0.0338)	(0.0259)	(0.0287)	(0.0337)		
Estimation method	Probit	Probit	Probit	Ordered probit	Ordered probit	OLS		


eTable 3. Effect of SRV on Non-vision Outcomes

Notes: Each column presents coefficients on SRV (excluded category=Excellent) from a model with the dependent variable listed in the top row. All models except HUI3 include controls for age, gender, race/ethnicity, education. All models include controls for comorbidities.

2.2.3. Model Validation Results

eTable 4. Actual and Simulated SRV Distribution, 2014

SRV Category	HRS (fu	ll sample)	Diabetes su	bpopulation
	Actual	Actual Simulated		Simulated
Excellent	0.3790	0.3737	0.2996	0.2653
Good	0.4058	0.4061	0.4141	0.4078
Fair	0.1631	0.1587	0.2025	0.2086
Poor	0.0521	0.0615	0.0838	0.1183

eFigure 2. Actual SRV (2004-2014) and Simulated SRV (2016-2040)

Notes: Left panel presents a cohort simulation. Right panel presents a population simulation, which allows new entrants in the model each cycle.

so, ŝ Percent Percent 2 ς. 2004 2016 2028 2040 2004 2016 2028 2040. Year Year 4, Real. 4, Sim. 1, Real • 2, Real • 3, R eal ٠ 4, Real 1, Real ٠ 2, Real 2, Sim ٠ 3, Real 3, Sim 1.Sim 2, Sim 3, Sim 4, Sim 1, Sim

eFigure 3. Actual SRV (2004-2014) and Simulated SRV (2016-2040), Diabetes Subpopulation

Notes: Left panel presents a cohort simulation. Right panel presents a population simulation, which allows new entrants in the model each cycle.

Outcome	Actual HRS	Microsimulation Outcomes (Cohort)					
	2010	2010	2012	2014	2016	2018	
Excellent SRV	0.3988	0.3835	0.3785	0.3737	0.3695	0.3662	
Good SRV	0.4110	0.4074	0.4039	0.4061	0.4065	0.4066	
Fair SRV	0.1407	0.1525	0.1573	0.1587	0.1603	0.1607	
Poor SRV	0.0496	0.0566	0.0602	0.0615	0.0637	0.0664	
Mortality	N/A	0.0540	0.0468	0.0501	0.0538	0.0577	
Employment	0.3830	0.4408	0.4208	0.3839	0.3475	0.3097	
ADL or IADL	0.2088	0.2300	0.2340	0.2453	0.2559	0.2672	
HUI3	0.7627	0.7374	0.7324	0.7264	0.7198	0.7124	

eTable 5. Actual and simulated outcomes

Notes: Results are from a cohort simulation.

Outcome	Actual HRS	Microsimulation Outcomes (Cohort)					
Outcome	2010	2010	2012	2014	2016	2018	
Excellent SRV	0.2927	0.2758	0.2730	0.2653	0.2640	0.2586	
Good SRV	0.4265	0.4159	0.4007	0.4078	0.4028	0.4026	
Fair SRV	0.1946	0.2137	0.2101	0.2086	0.2104	0.2100	
Poor SRV	0.0862	0.0946	0.1163	0.1183	0.1228	0.1288	
Mortality	N/A	0.0813	0.0794	0.0834	0.0870	0.0922	
Employment	0.2846	0.3135	0.2987	0.2676	0.2377	0.2063	
ADL or IADL	0.3118	0.3542	0.3535	0.3692	0.3817	0.3921	
HUI3	0.6167	0.6477	0.6448	0.6372	0.6293	0.6213	

eTable 6. Actual and simulated outcomes, diabetes subpopulation

Notes: Results are from a cohort simulation.

3. Mapping VA to SRV

3.1. SRV Data Checks

We conducted several analyses to explore the suitability of SRV as a measure of vision. First, we used the HRS to check the correlation between overall SRV and near and distance vision (both self-reported) and the stability of the relationship across study waves (eeTable 7-eeTable 10). Second, we checked whether the relationship between VA and SRV was relatively stable over the years when NHANES collected vision data (eeTable 11). Finally, we used the NHIS to confirm that the SRV distribution has been relatively stable since 2008 (eeTable 12).

			O'ter any	Distance	, and 1 (c				-	
		Waves	Wave	Wave	Wave	Wave	Wave	Wave	Wave	Wave
		5-12	5	6	7	8	9	10	11	12
Full sample	Distance SRV	0.687	0.717	0.713	0.691	0.697	0.668	0.659	0.672	0.682
	Near SRV	0.679	0.718	0.713	0.689	0.698	0.664	0.643	0.656	0.660
Diabetes, over age	Distance SRV	0.688	0.717	0.713	0.694	0.697	0.669	0.662	0.674	0.683
50	Near SRV	0.681	0.718	0.714	0.690	0.700	0.665	0.647	0.658	0.661

		SRV (Overall)							
		Excellent	Good	Fair	Poor				
e	Excellent	67.03%	26.53%	5.58%	0.87%				
tance V	Good	12.43%	67.32%	17.34%	2.91%				
Dista RV	Fair	2.94%	17.95%	64.94%	14.17%				
ΩΣ	Poor	1.08%	6.56%	19.05%	73.31%				

eTable 8. Distribution of Distance and Overall SRV

Notes: Results generated using HRS waves 5-12 pooled. Sample was limited to people with diabetes over the age of 50. Excellent SRV combines the 'Excellent' and 'Very Good' responses in the HRS; Poor SRV combines the 'Poor' and 'Blind' responses in the HRS.

eTable 9. Distribution of Near and Overall SRV

		SRV (Overall)			
		Excellent	Good	Fair	Poor
	Excellent	71.82%	23.42%	4.18%	0.57%
	Good	15.62%	67.09%	14.99%	2.3%
lear RV	Fair	5.93%	26.03%	57.12%	10.92%
Z Z	Poor	3.8%	12.08%	26.91%	57.2%

Notes: Results generated using HRS waves 5-12 pooled. Sample was limited to people with diabetes over the age of 50. Excellent SRV combines the 'Excellent' and 'Very Good' responses in the HRS; Poor SRV combines the 'Poor' and 'Blind' responses in the HRS.

eTable 10. Distribution of Near and Distance SRV

		Distance SRV			
		Excellent	Good	Fair	Poor
	Excellent	83.04%	14.54%	1.97%	0.45%
	Good	21.03%	70.23%	7.12%	1.62%
lear RV	Fair	16.21%	37.62%	39.42%	6.75%
Z Z	Poor	12.1%	25.52%	18.16%	44.22%

Notes: Results generated using HRS waves 5-12 pooled. Sample was limited to people with diabetes over the age of 50. Excellent SRV combines the 'Excellent' and 'Very Good' responses in the HRS; Poor SRV combines the 'Poor' and 'Blind' responses in the HRS.

eTable 11. SRV Distribution by VA and NHANES Survey Year

			SRV Ca	ategory	
	NHANES sample	Excellent	Good	Fair	Poor
Better eye:	1999-2000	22.18%	48.5%	23.24%	6.08%
VA 20/20-	2001-2002	24.23%	53.55%	17.68%	4.53%
20/40	2003-2004	30.53%	47.86%	18.12%	3.49%
	2005-2006	28.41%	52.21%	16.29%	3.09%
	2007-2008	24.5%	51.43%	20.09%	3.98%
Better eye:	1999-2000	11.11%	34.92%	30.69%	23.28%
VA worse	2001-2002	10.63%	43.48%	28.5%	17.39%
than 20/40	2003-2004	13.73%	37.34%	32.62%	16.31%
	2005-2006	10.78%	39.22%	28.92%	21.08%
	2007-2008	10.43%	39.21%	32.01%	18.35%
Worse eye:	1999-2000	25.25%	49.36%	20.62%	4.78%
VA 20/20-	2001-2002	27.16%	54.17%	15.75%	2.92%
20/40	2003-2004	33.88%	47.49%	15.68%	2.96%
	2005-2006	31.11%	51.63%	15.02%	2.24%

	2007-2008	25.9%	53.96%	17.1%	3.04%
Worse eye:	1999-2000	11.33%	41.95%	31.86%	14.87%
VA worse	2001-2002	12.52%	48.56%	26.06%	12.86%
than 20/40	2003-2004	17.14%	44.76%	28.73%	9.37%
	2005-2006	15.81%	48.85%	23.8%	11.55%
	2007-2008	16.26%	41.23%	31.24%	11.27%

Notes: Results generated using NHANES 1999-2008 data; sample included all individuals who had non-missing vision data from the exam portion of the survey. The 'Poor' SRV category combines 'Poor' and 'Very Poor' responses form NHANES.

		SRV Category	
Year	Excellent/Good	Fair	Poor
2010	85.5	12.6	1.9
2011	88.0	10.5	1.5
2012	83.1	15.2	1.7
2013	81.7	16.2	2.2
2014	83.5	14.5	2.0
2015	83.5	14.5	2.1
2016	84.7	13.7	1.6
2017	83.8	14.6	1.7
2018	81.4	16.6	2.0
2019	85.5	13.1	1.4
2020	84.4	14.1	1.5

Notes: Results generated using NHIS 2010-2020; sample included all individuals who had non-missing response to the question "Do you have difficulty seeing, even when wearing glasses?" Responses were coded to match the approximate distribution in the SRV categories: Excellent/Good (combined) corresponded to "No difficulty"; Fair corresponded to "Some difficulty", and Poor corresponded to "A lot of difficulty" and "Cannot do at all".

3.2. SRV Model

eeTable 13 presents the VA distribution stratified by SRV for the NHANES 2005-06 and 2007-08 waves. Although our mapping uses the diabetes population aged 50 or older, the relationship between VA distribution is similar for the full NHANES sample and the population with diabetes. The correlation between SRV and VA in the worse eye is slightly stronger than SRV and VA in the better eye irrespective of which subgroup we consider. For the diabetes population aged 50 or older, the correlation between SRV and VA in the better (worse) eye is 0.240 (0.272).

eTable 13. VA distribution stratified by SRV

		Bette	er eye	Wors	e eye
		20/40 or better	<20/40	20/40 or better	<20/40
NHANES	Excellent	95.2%	4.9%	84.9%	14.9%
2005-2008	Good	91.7%	8.4%	76.9%	23.0%
[N=9,653]	Fair	84.2%	15.8%	62.3%	37.8%
	Poor	66%	34.1%	42.1%	57.9%
Diabetes	Excellent	95.7%	4.3%	78.1%	21.9%
population	Good	90.1%	9.9%	70.0%	30.0%
[N=1,085]	Fair	79%	21.0%	53.7%	46.3%
	Poor	60%	40.0%	34.5%	65.6%
	Excellent	96.0%	4.0%	78.2%	21.9%

Diabetes	Good	90.3%	9.7%	68.5%	31.5%
population	Fair	78.4%	21.6%	52.0%	48.1%
age 50+ [N=882]	Poor	56.4%	43.6%	32.1%	67.9%

Notes: Results derived using NHANES 2005-06 and 2007-08 waves pooled. The 'Poor' SRV category combines Poor and Very Poor responses in NHANES.

Visual acuity	Better eye	Worse eye
20/25	0.0274	0.2081
	(0.1057)	(0.1309)
20/30	-0.041*	0.3851**
	(0.1490)	(0.1563)
20/40	0.2618	0.1491
	(0.1967)	(0.1740)
20/50	0.4866***	0.6436***
	(0.1755)	(0.1694)
20/60	0.6151	0.2215
	(0.6089)	(0.2515)
20/80	0.5611	0.7101**
	(0.4291)	(0.2837)
20/200	0.7117	0.8574***
	(0.3770)	(0.2152)
<20/200	2.5085***	0.9947***
	(0.7739)	(0.2702)

Notes: Regression coefficients from an ordered probit model where the dependent variable is the four SRV categories (1=Excellent; 2=Good; 3=Fair; 4=Poor) and the sample was restricted to people with diabetes over the age of 50. Model includes controls for sex, race/ethnicity, age, and time since diabetes diagnosis. 20/20 is the omitted VA category. A positive coefficient implies that a person is more likely to have worse SRV relative to someone with 20/20 vision. This model was used to generate predictions for the starting vision distributions (see Table 1 in the main paper). Significance: ***p<0.01; **p<0.05; *p<0.1

eTable 15. SRV Model: Estimated Coefficients for Demographic Variables

Variable	Coefficient (standard error)
Female	0.0415
	(0.0764)
Hispanic	0.0970
_	(0.1188)
Black	0.1166
	(0.1024)
Age 55-59	0.1006
	(0.1297)
Age 60-64	-0.066
	(0.1297)
Age 65-69	-0.154
	(0.1302)
Age 70-74	-0.408
	(0.1431)
Age 75+	-0.174
	(0.1344)

Years since diabetes diagnosis	-0.004
	(0.0033)

Notes: Regression coefficients from an ordered probit model where the dependent variable is the four SRV categories (1=Excellent; 2=Good; 3=Fair; 4=Poor) and the sample was restricted to people with diabetes over the age of 50. Model also includes controls for VA in better and worse eye. A positive coefficient implies that a person is more likely to have worse SRV. Significance: ***p<0.01; **p<0.05; *p<0.1

We adjusted the estimated cut points for the model to ensure the predicted SRV distribution matched that of the microsimulation data (i.e., HRS) rather than NHANES. The results presented in eeTable 16 imply that matching the HRS distribution requires two modifications to the original model: 1) shifting some people from the good to the excellent and fair SRV categories and 2) shifting some people from the poor to fair SRV category.

\mathbf{e}				
	Original model cut points	Final cut points		
	(NHANES distribution)	(Match HRS distribution)		
Cutpoint 1	-0.6074	-0.2845		
Cutpoint 2	0.9098	0.9142		
Cutpoint 3	2.0932	1.8613		

eTable 16. Estimated and modified SRV category model cut points

4. Untreated Scenario Implementation

First, we use the baseline data from Protocol T to classify each person's DME severity according to area and degree of retinal thickening.[2] Next, to derive their counterfactual (untreated) VA in year 2, we subtract the mean vision loss for the relevant severity category. Finally, we use the counterfactual VA data and Protocol T demographics to predict SRV using the model described in Section 3. eeTable 17 provides a summary of the mean VA for the Protocol T and counterfactual, and eeTable 18 shows how the data and counterfactual translate to the VA categories used in our mapping.

		Mean VA (letters)			
DME	N (%)	Baseline	2-year	2-year	
severity		Protocol T	(VEGF)	Untreated	
			Protocol T	Counterfactual	
1	54 (8.7)	68.1	79.4	62.5	
2	41 (6.7)	69.6	79.2	59.6	
3	32 (5.2)	68.5	80.6	58.2	
4	58 (9.4)	68.2	77.8	57.6	
5 (worst)	431 (70.0)	63.5	75.7	50.9	
Full sample	616	64.9	76.7	53.5	

eTable 17. Protocol T and Untreated Counterfactual Mean VA (Letters)

eTable 18. Protocol T and Untreated Counterfactual VA Distribution

	Baseline	2-year (VEGF)	2-year Untreated	
	Protocol T	Protocol T	Counterfactual	
20/20	0.0	43.7	0.0	
20/25	12.4	21.1	0.0	
20/30	27.3	14.3	1.0	
20/40	20.5	6.9	6.0	
20/50	11.5	5.0	22.2	

20/60	9.6	2.8	25.3
20/80	5.8	1.6	14.3
20/200	10.8	2.8	22.2
<20/200	2.3	1.8	8.9

5. Cohort estimate input parameters

eeTable 19 presents baseline inputs used to generate cohort level estimates and their sources. Our cohort size (N=1,108,500) was derived by applying the DME incidence rate to the total US population with diabetes aged 45 or older. We then scaled up the individual level results from the microsimulation model based on the 2020 Vestrum treatment mix to derive the benefit of current treatment for DME in the U.S.

	Value	Source
Population parameters		
U.S. population with diabetes, aged ≥ 45	29,100,000	CDC (2020) [3]
DME incidence	0.038	Varma et al (2014) [4]
Mean age at baseline	62.78	DRCR Protocol T [5]
Share with Excellent SRV at baseline	0.2460	DRCR Protocol T [5];
		VA to SRV mapping
Share with Good SRV at baseline	0.3954	DRCR Protocol T [5];
		VA to SRV mapping
Share with Fair SRV at baseline	0.2285	DRCR Protocol T [5];
		VA to SRV mapping
Share with Poor SRV at baseline	0.1300	DRCR Protocol T [5];
		VA to SRV mapping
Treatment weights		
Untreated	0.28	Vestrum 2020 analysis
Treated with anti-VEGFs	0.68	Vestrum 2020 analysis
Treated with laser monotherapy	0.03	Vestrum 2020 analysis
Treated with steroid monotherapy	0.01	Vestrum 2020 analysis
Annual treatment cost		
Untreated	\$478.65	Includes cost of office
		visits
Anti-VEGF treatment (real world frequency)	Year 1: 4,369.4	Includes cost of office
	Year 2+: 3277.1	visit, eye injection, and
		weighted average of drug
		cost
Anti-VEGF treatment (Protocol T frequency)	Year 1: \$10,923.60	Includes cost of office
	Year 2: 6,554.10	visit, eye injection, and
	Year 3+: \$1,092.40	weighted average of drug
		cost
Laser treatment	Year 1: \$2075.40	Includes cost of office
	Year 2+: 478.65	visits, laser therapy
Steroid treatment*	Year 1: \$1304.10	Includes cost of office
	Year 2-3:\$978.40	visit, eye injection, and
		weighted average of drug
		cost

eTable 19. Cohort Estimates: Input Parameters

Notes: See eTable 20 and eTable 21 for drug weights, treatment frequencies, and components of cost parameters used to derive annual treatment costs. *Steroid treatment cost follows a 3 year cycle for the duration of the 20 year time horizon.

Treatment	Drug weights	Treatment frequency scenario			
Туре		Real world treatment frequency	Protocol T treatment frequency		
Anti- VEGF	Bevacizumab: 45% Aflibercept: 36% Ranibizumab: 19%	Year 1: 4 injections Year 2+: 3 injections	Year 1: 10 injections Year 2: 6 injections Year 3+: 1 injection		
Laser	N/A	Year 1: 3 treatments Year 2+: 4 office visits (no treatments)			
Steroid	Dexamethasone implant: 64% Triamcinolone acetonide: 33% Fluocinolone implant: 3%	Dexamethasone intravitreal implant: 0.75 injections per year Triamcinolone acetonide: 3 injections (year 1); 1 injection (years 2+) Fluocinolone intravitreal implant: 0.33 injections per year			
Untreated	N/A	4 office visits per year			

eTable 20. Treatment Frequency and Drug Weights

Notes: Drug weights and real world treatment frequency derived from authors' analysis of Vestrum 2020 data. Protocol T treatment frequency based on mean injection data from DRCR Protocol T.[5]

eTable 21. Cost Parameter Components (2022 USD)

Description	CPT Code	Cost
Office visit	99214	\$119.66
Laser treatment	67210	\$532.24
Injection cost (eye drug)	67028	\$107.72
Bevacizumab (1.25mg)	J9035	\$67.86
Aflibercept (2mg)	J9400	\$1,841.50
Ranibizumab (0.3mg)	J2778	\$921.60
Triamcinolone Acetonide (1mg)	J3304	\$17.63
Dexamethasone intravitreal implant (0.7mg)	J7312	\$1400.00
Fluocinolone intravitreal implant	See note	\$7500.00

Note: Costs are from the 2022 Physician Fee Schedule[6]. Fluocinolone intravitreal implant was not priced by CMS at the time of our model development; cost reflects the wholesale acquisition cost.

6. Sensitivity analyses

e l'able 22. 5	mulated metime outcome	s ioi a nypoine	lical 31-year olu	, il catiliciti uui	ability – 0 years
		Untreated	Anti-VEGF	Laser	Steroid
	Years with Excellent or				
Vision	Good SRV	15.5	17.1	16.5	16.5
outcomes	Years with Fair or Poor				
	SRV	12.5	11.8	11.9	12.0
	Life expectancy (years)	28.0	28.8	28.5	28.5
Direct	Quality-adjusted life				
Direct effects	years	16.3	17.3	16.8	16.8
effects	QALY (\$)				
		1,680,698	1,774,349	1,728,763	1,734,005
	Disability free life years	15.7	16.8	16.2	16.3
	Years claiming				
	disability	2.9	2.5	2.7	2.7
Indirect	Disability benefits (\$)				
effects		14,392	12,433	13,738	13,295
	Years working	8.1	8.5	8.3	8.3
	Earnings (\$)				
	-	161,613	188,096	176,133	176,111

eTable 22. Simulated lifetime outcomes for a hypothetical 51-year old, treatment durability = 6 years

Notes: The value of a QALY is assumed to be \$150,000. Future dollar values are discounted at a rate of 3% per year. Disability benefits reflect government disability payments to an individual, which implies anti-VEGF, laser, or steroid treatment results in savings to the government.

eTable 23. Simulated lifetime outcomes for a hypothetical 51-year old, treatment durability = 12 years

-		Untreated	Anti-VEGF	Laser	Steroid
· · ·	Years with Excellent or				
Vision	Good SRV	15.5	17.5	17.0	16.9
outcomes	Years with Fair or Poor				
	SRV	12.5	11.4	11.5	11.6
	Life expectancy (years)	28.0	28.9	28.5	28.5
Direct	Quality-adjusted life				
effects	years	16.3	17.4	16.9	17.0
effects	QALY (\$)				
		1,680,698	1,786,537	1,740,987	1,746,398
	Disability free life years	15.7	16.9	16.3	16.4
	Years claiming				
	disability	2.9	2.5	2.7	2.6
Indirect	Disability benefits (\$)				
effects		14,392	12,191	13,474	13,032
	Years working	8.1	8.6	8.4	8.4
	Earnings (\$)				
	-	161,613	189,731	177,774	177,784

Notes: The value of a QALY is assumed to be \$150,000. Future dollar values are discounted at a rate of 3% per year. Disability benefits reflect government disability payments to an individual, which implies anti-VEGF, laser, or steroid treatment results in savings to the government.

		Untreated	Anti-VEGF	Laser	Steroid
	Years with Excellent or				
Vision	Good SRV	15.5	16.9	16.3	16.3
outcomes	Years with Fair or Poor				
	SRV	12.5	12.0	12.1	12.2
	Life expectancy (years)	28.0	28.8	28.4	28.4
Dimost	Quality-adjusted life				
Direct effects	years	16.3	17.2	16.7	16.8
effects	QALY (\$)				
		1,680,698	1,765,729	1,720,011	1,725,457
	Disability free life years	15.7	16.7	16.1	16.2
	Years claiming				
	disability	2.9	2.5	2.7	2.7
Indirect	Disability benefits (\$)				
effects		14,392	12,570	13,862	13,429
	Years working	8.1	8.5	8.3	8.3
	Earnings (\$)				
	-	161,613	187,499	175,558	175,517

eTable 24. Simulated lifetime outcomes for a hypothetical 51-year old, treatment durability = 2 years

Notes: The value of a QALY is assumed to be \$150,000. Future dollar values are discounted at a rate of 3% per year. Disability benefits reflect government disability payments to an individual, which implies anti-VEGF, laser, or steroid treatment results in savings to the government.

		Net Value (U	SD, billions)	
		Treatment frequency assumption		
Durshility		"Real world"	"Protocol T"	
Durability assumption	Time horizon		10 injections in year	
assumption		4 injections in year 1	1 6 in year 2	
		3 in year 2+	1 in year 3+	
Permanent	2 years	1.0	-5.8	
	5 years	10.0	6.9	
	10 years	25.3	26.4	
	20 years	47.8	52.8	
12 years	2 years	1.0	-5.8	
	5 years	9.5	6.4	
	10 years	21.6	22.7	
	20 years	34.2	39.1	
6 years	2 years	1.0	-5.8	
	5 years	9.0	5.9	
	10 years	18.6	19.6	
	20 years	28.1	33.1	
2 years	2 years	1.0	-5.8	
	5 years	8.5	5.3	
	10 years	14.2	15.2	
	20 years	16.5	21.5	

QALY equal to \$150K.

	Real world treatment frequency QALY Value			Protocol T treatment frequency QALY Value		
	\$50K	\$100K	\$300K	\$50K	\$100K	\$300K
Two-year horizon						
Direct benefit	1.5	3.0	9.1	1.5	3.0	9.1
Indirect benefit	1.05	1.05	1.05	1.05	1.05	1.05
Total cost	4.6	4.6	4.6	11.4	11.4	11.4
Net value	-2.1	-0.6	5.6	-8.9	-7.4	-1.3
Five-year horizon						
Direct benefit	5.5	11.0	32.0	5.5	11.0	32.0
Indirect benefit	2.87	2.87	2.87	2.87	2.87	2.87
Total cost	9.3	9.3	9.3	12.5	12.5	12.5
Net value	-0.9	4.6	25.6	-4.1	1.4	22.4
Twenty-year horizo	on					
Direct benefit	21.0	42.0	126.1	21.0	42.0	126.1
Indirect benefit	4.76	4.76	4.76	4.76	4.76	4.76
Total cost	20.0	20.0	20.0	15.0	15.0	15.0
Net value	5.8	26.8	110.9	10.8	31.8	115.9

eTable 26. Cohort Sensitivity Analysis: Value of a QALY

Notes: All values are in USD (billions). Results assume permanent treatment durability.

eTable 27. Cohort Sensitivity Analysis: Annual Weighted Drug Cost of Anti-VEGFs

	Real world treatment frequency			Protocol T treatment frequency		
	Annual cost of anti-VEGF drugs			Annual cost of anti-VEGF drugs		
	\$432.49	\$864.98	\$1,297.47	\$432.49	\$864.98	\$1,297.47
	(-50%)	(Main)	(+50%)	(-50%)	(Main)	(+50%)
Two-year horizon						
Total benefit	5.6	5.6	5.6	5.6	5.6	5.6
Total cost	2.6	4.6	6.7	6.7	11.4	16.2
Net value	3.0	1.0	-1.1	-1.1	-5.8	-10.6
Five-year horizon						
Total benefit	19.4	19.4	19.4	19.4	19.4	19.4
Total cost	5.1	9.3	13.5	7.0	12.5	18.0
Net value	14.3	10.1	5.9	12.4	6.9	1.4
Twenty-year horizo	on			•		
Total benefit	67.8	67.8	67.8	67.8	67.8	67.8
Total cost	10.9	20.0	29.0	7.9	15.0	22.1
Net value	56.9	47.8	38.8	59.9	52.8	45.7

Notes: All values are in USD (billions). Results assume permanent treatment durability and value of a QALY equal to \$150K.

References

- 1. Goldman DP, Shekelle PG, Bhattacharya J, Hurd M, Joyce GF. Health status and medical treatment of the future elderly. 2004.
- Gangnon RE, Davis MD, Hubbard LD, Aiello LM, Chew EY, Ferris FL, et al. A Severity Scale for Diabetic Macular Edema Developed from ETDRS Data. Invest Ophthalmol Vis Sci. 2008 Nov 1;49(11):5041.
- 3. Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020 [Internet]. 2022 Jan [cited 2022 Jul 20]. Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html.
- Varma R, Bressler NM, Doan QV, Gleeson M, Danese M, Bower JK, et al. Prevalence of and Risk Factors for Diabetic Macular Edema in the United States. JAMA Ophthalmol. 2014 Nov 1;132(11):1334.
- 5. DRCR Retina Network. Protocol T (NCT01627249) dataset [Internet]. Available from: https://public.jaeb.org/drcrnet/stdy/206
- 6. Centers for Medicare and Medicaid Services. Physician Fee Schedule [Internet]. 2022. Available from: https://www.cms.gov/medicare/physician-fee-schedule/search/overview