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Table S1: Input features for the machine learning model 

The Garmin vivoactive 4s was used to record heart rate, heart rate variability, motion 

and time signals. The Empatica E4 was used to record electrodermal activity signals. 

We applied identical aggregation functions for heart rate, electrodermal activity, and 

motion signals. For heart rate variability, we used aggregation functions to compute 

the features in the time- and frequency-domain. Additionally, time encoded as full hours 

from 0100 to 2400 was added as a feature. This resulted in a total of 37 input features. 

  Term Explanation 
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Garmin 

vivoactive 4s 

Heart rate Number of heart beats within one minute 

Heart rate variability Variation in the beat-to-beat intervals 

Motion Zero-crossing (i.e., the total number of sign changes 

on the z-axis over a 30 second window) 

Time Time of the day encoded in 24 hours 

Empatica E4 Electrodermal activity Electrical conductance of the skin 
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Aggregation 

functions for 

heart rate, 

electrodermal 

activity, and 

motion 

Mean Arithmetic mean, measures the average value in a 

time series 

STD Standard deviation, measures the amount of 

variation of the values in the time series 

𝐼𝑄𝑅 Interquartile range, IQR between the 25th and 75th 

percentile of the signal 

𝐼𝑄𝑅5−95 Interquartile range, IQR between the 5th and 95th 

percentile of the signal 

𝑃5 5th percentile of the signal 

𝑃95 95th percentile of the signal 

Time-domain 

heart rate 

variability 

𝑆𝐷𝑁𝑁 Standard deviation of all inter-beat (NN) intervals 

𝑆𝐷𝑆𝐷 Standard deviation of the differences between 

successive NN intervals 

𝑅𝑀𝑆𝑆𝐷 The square root of the mean of the sum of the 

squares of differences between adjacent NN 

intervals 

𝑝𝑁𝑁50 Number of pairs of adjacent NN intervals differing by 

more than 50 milliseconds (ms) in the entire 

recording divided by the total number of all NN 

intervals 

𝑝𝑁𝑁20 Number of pairs of adjacent NN intervals differing by 

more than 20 ms in the entire recording divided by 

the total number of all NN intervals 

𝐶𝑉𝑁𝑁 Coefficient of variation equal to the ratio of SDNN 

divided by mean NN interval 

𝐶𝑉𝑆𝐷 Coefficient of variation of successive differences 

equal to the RMSSD divided by mean NN interval 
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Frequency-

domain heart 

rate 

variability 

𝑇𝑜𝑡𝑎𝑙𝑝𝑜𝑤𝑒𝑟 The variance of NN intervals over the temporal 

segment below 0.04 Hz 

𝑣𝑙𝑓 Power in very low frequency range below or equal 

0.04 Hz 

𝑙𝑓 Power in low frequency range 0.04 Hz and 0.15 Hz 

ℎ𝑓 Power in high frequency range 0.15 Hz and 0.4 Hz 

𝑙𝑓 ℎ𝑓⁄ − 𝑟𝑎𝑡𝑖𝑜 Ratio of 𝑙𝑓 to ℎ𝑓 



Lehmann V et al. 

4 
 

Supplemental Methods 1: Sample size consideration 

To estimate the sample size, we considered two scenarios. Today’s consumer 

smartwatches include heart rate and motion sensors (scenario 1). The latest consumer 

smartwatches now entering the market also have electrodermal activity sensors (e.g., 

Fitbit Sense 2 and Versa 4, scenario 2, the focus of this paper). To estimate the number 

of participants for scenario 1 we assumed a moderate effect size of 0.5 and used 

GPower, which suggested a sample size of n=34 to achieve a power of 0.80 at an 

alpha level of 0.05. To estimate the number of participants for scenario 2 we assumed 

a higher effect size of 0.7 and used GPower, which suggested a sample size of n=19 

to achieve a power of 0.80 at an alpha level of 0.05. However, we must acknowledge 

that estimating sample size for machine learning performance is challenging (1; 2), 

especially for observational studies without prior data on the main outcome (detecting 

hypoglycemia from smartwatch data). To address scenarios 1 and 2 while expecting 

≈15% dropouts, we recruited 40 individuals. Ultimately, 31 participants used both 

wearables to capture heart rate, motion, and electrodermal activity (scenario 2), with 9 

individuals having less than two hypoglycemic events, leaving 22 eligible for the final 

analysis. 

To estimate the expected hypoglycemic events, we used retrospective continuous 

glucose measurement (CGM) data from a previous study performed at our clinic. 

Based on this data, we assumed a frequency of 0.2 hypoglycemic events per day in 

individuals on insulin treatment (3) and considered 30 days as the feasible study 

duration for our participants. Therefore, for scenario 1, we expected ≈200 

hypoglycemic events (i.e., 34*30 days*0.2), for scenario 2 we expected ≈110 events 

(i.e., 19*30 days*0.2). Our final analysis comprised a total of 197 hypoglycemic events, 

thereby exceeding the assumptions.  



Lehmann V et al. 

5 
 

Supplemental Methods 2: Detailed description of the pairing approach 

For model building, we follow (4) and refer to it as the pairing approach. In brief, (4) 

proposed to segment the data (e.g., using a clustering algorithm), train individual 

models on each segment, and subsequently, find the best model for an unseen 

observation. We apply the same steps but adopted the approach slightly to the problem 

setting of hypoglycemia detection. 

In the training stage (first step), we perform the subject segmentation and model 

training. Taking the size of the data set into account, we consider each subject as a 

segment instead of using an additional clustering algorithm. Then, we train a machine 

learning model on each subject, specifically a gradient-boosting decision tree. For the 

implementation, we leverage the open-source Python package LightGBM (version 

3.3.2). 

In the validation stage (second step), we find (pair) the best model for an unseen test 

subject based on a validation score (i.e., the mean area under the receiver operating 

curve [AUROC] calculated according to the event-based cross-validation).  

Finally, in the testing stage (third step) we compute the mean performance of the paired 

model for the unseen test subject. For the implementation, we refer to our publicly 

available source code (https://github.com/im-ethz/radar). 

Concerning our reported results, three subjects could not be paired. The three 

individuals were not paired during the validation process as their validation scores, 

returned by the machine learning models, were below a minimum threshold that is 

enforced to ensure a minimum or fair classification performance (AUROC >0.7, (1)). 

Most likely, the training dataset size for these three individuals is too small and the ML 

model was not able to learn generalizable patterns. Specifically, these three subjects 
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might be paired if more individuals were available in the training data set. 

Unfortunately, we could not empirically test this hypothesis.  



Lehmann V et al. 

7 
 

References 

1. Obuchowski NA, Lieber ML, Wians FH, Jr. ROC curves in clinical chemistry: uses, 
misuses, and possible solutions. Clin Chem 2004;50:1118-1125 
2. Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required 
for classification performance. BMC Medical Informatics and Decision Making 
2012;12:8 
3. Zueger T, Gloor M, Lehmann V, Melmer A, Kraus M, Feuerriegel S, Laimer M, 
Stettler C. White coat adherence effect on glucose control in adult individuals with 
diabetes. Diabetes Res Clin Pract 2020;168:108392 
4. De Caigny A, Coussement K, De Bock KW. A new hybrid classification algorithm for 
customer churn prediction based on logistic regression and decision trees. European 
Journal of Operational Research 2018;269:760-772 

 


