SUPPLEMENTARY INFORMATION ## Immunogenicity and safety of SARS-CoV-2 mRNA vaccines in a cohort of patients with type 1 diabetes Francesca D'Addio^{1,2,#}, Gianmarco Sabiu^{1,3,#}, Vera Usuelli¹, Emma Assi¹, Ahmed Abdelsalam¹, Anna Maestroni¹, Andy Joe Seelam¹, Moufida Ben Nasr¹, Cristian Loretelli¹, Davide Mileto⁴, Giada Rossi¹, Ida Pastore², Laura Montefusco², Paola S. Morpurgo², Laura Plebani², Antonio Rossi², Enrica Chebat², Andrea M. Bolla², Elena Lunati², Chiara Mameli⁵, Maddalena Macedoni⁵, Spinello Antinori⁶, Stefano Rusconi⁶, Maurizio Gallieni³, Cesare Berra⁷, Franco Folli⁸, Massimo Galli⁶, Maria Rita Gismondo⁴, Gian Vincenzo Zuccotti⁵ and Paolo Fiorina^{1,2,9} ¹International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milan, Italy; ²Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy; ³Nephrology and Dialysis Unit, ASST Fatebenefratelli Sacco and Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milan, Italy; ⁴Diagnostic Services, Clinical Microbiology, Virology and Bioemergence Diagnostics, ASST Fatebenefratelli-Sacco and Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milan, Italy; ⁵Pediatric Department, Buzzi Children's Hospital and Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milan, Italy; ⁶Department of Infectious Diseases, ASST Fatebenefratelli-Sacco and Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Milan, Italy; ⁷Metabolic Diseases and Diabetes, Multimedica IRCCS, Sesto San Giovanni, Milan, Italy; ⁸Endocrinology and Metabolism, Department of Health Science, Università di Milano, ASST Santi Paolo e Carlo, Milan, Italy; ⁹Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. [#]These authors contributed equally to this work. ## **TABLE OF CONTENTS:** **SUPPLEMENTARY FIGURES 1-3** SUPPLEMENTARY TABLE 1-3 #### SUPPLEMENTARY FIGURES ## Supplementary Figure 1. Study flow-chart. Supplementary Figure 2. Local and systemic adverse effects in T1D patients and nondiabetic subjects who received two doses of SARS-CoV-2 mRNA vaccine. (A, B). Bar graphs representing percentage of T1D patients and non-diabetic subjects reporting local and systemic reactions after dose 1 (A) and after dose 2 (B) of the SARS-CoV-2 mRNA vaccines. Assessment 'after dose 1' was performed 3-4 weeks after the first dose, and assessment 'after dose 2' was performed 4 weeks after the second dose. **Abbreviations**: T1D, type 1 diabetes. **Supplementary Figure 3.** Anti–SARS-CoV-2 antibody response in patients with T1D and non-diabetic subjects who were seropositive before vaccination. (A, B, C). Anti–SARS-CoV-2 antibody levels in SARS-CoV-2-seropositive patients with T1D and non-diabetic subjects at baseline (A), after dose 1 (B), and after dose 2 (C). Anti-SARS-CoV-2 antibody titers are reported as median with interquartile range. 'After dose 1' was 3-4 weeks after the first dose, and 'after dose 2' was 4 weeks after the second dose. #### SUPPLEMENTARY TABLES Supplementary Table 1. Distribution of mRNA SARS-CoV-2 vaccines in the study population. | | BNT162b2 | mRNA-1273 | |------------------------------|------------|------------| | T1D – n of patients (%) | 168 (51.5) | 158 (49.5) | | Controls – n of patients (%) | 29 (59.1) | 20 (40.9) | **Abbreviations**: n, number; T1D, type 1 diabetes; BNT162b2 Pfizer mRNA SARS-CoV-2 vaccine administered at day 0 and 21; mRNA-1273, Moderna mRNA SARS-CoV-2 vaccine administered at day 0 and 28. **Supplementary Table 2.** Multivariable analysis of factors associated with the development of cytotoxic response in the whole study population after having received the first and the second dose of the SARSCoV2 mRNA vaccine. | Cytotoxic response after dose 1 | | | | | | |---------------------------------|---------------------------------|---------|--|--|--| | Variables | Regression coefficient (95% CI) | P value | | | | | Type 1 diabetes | -3.68 (-5.49 to -1.88) | 0.0001 | | | | | Gender (Male) | -0.01 (-0.97 to 0.93) | 0.96 | | | | | Age (years) | -0.04 (-0.08 to -0.01) | 0.01 | | | | | Cardiovascular disease | 1.92 (-0.57 to 4.47) | 0.12 | | | | | Hypertension | -0.31 (-1.99 to 1.36) | 0.71 | | | | | Autoimmune thyroid disease | -0.25 (-1.45 to 0.95) | 0.68 | | | | | | L | | | | | | Cytotoxic response after dose 2 | | | | | | | Variables | Regression coefficient (95% CI) | P value | | | | | Type 1 diabetes | -1.76 (-3.22 to -0.30) | 0.01 | | | | | Gender (Male) | 0.42 (-0.61 to 1.46) | 0.42 | | | | | Age (years) | -0.02 (-0.05 to 0.01) | 0.21 | | | | | Hypertension | 0.43 (-1.01 to 1.88) | 0.55 | | | | | Autoimmune thyroid disease | -0.78 (-2.43 to 0.86) | 0.35 | | | | **Abbreviations:** CI, confidence interval; after dose 1, the first dose; after dose 2, after the second dose of the SARS-CoV-2 mRNA vaccines. # Supplementary Table 3. Continuous glucose monitoring in patients with T1D receiving the SARS-CoV-2 mRNA vaccine at three timepoints. | | Baseline | After the 1st | After the 2 nd | p value | |---|------------------|------------------|---------------------------|--| | | (n=150) | dose | dose | | | | | (n=150) | (n=150) | | | Time in range % | 64.1 ± 18.8 | 65.0 ± 18.2 | 62.6 ± 18.6 | $0.91^{\circ}; 0.76^{\circ}; 0.51^{\circ}$ | | Time above range % | 32.9 ± 19.8 | 32.2 ± 18.7 | 34.3 ± 19.1 | $0.95^{\circ}; 0.79^{\circ}; 0.60^{\perp}$ | | Time below range % | 3.0 ± 2.6 | 2.9 ± 3.2 | 2.9 ± 3.3 | 0.98^; 0.99 ¹ ; 0.99 ¹ | | Use of CGM % | 91.7 ± 12.2 | 91.0 ± 13.0 | 89.2 ± 16.7 | 0.89^; 0.30 ; 0.56 | | estimated HbA1c § % | 7.2 ± 0.8 | 7.2 ± 0.8 | 7.3 ± 0.8 | 0.99^; 0.93 ; 0.93 | | Coefficient of variation [†] % | 33.2 ± 6.7 | 33.2 ± 6.4 | 34.5 ± 6.8 | 0.99^; 0.33 ¹ ; 0.34 ¹ | | Glucose level (mg/dl) | 161.1 ± 30.0 | 160.6 ± 30.0 | 163.6 ± 31.0 | $0.99^{\circ}; 0.76^{\circ}; 0.69^{\circ}$ | Plus-minus values are means \pm SD. Abbreviations: CGM, continuous glucose monitoring; HbA1c, glycated hemoglobin. [^]Baseline vs "After the 1st dose"; Baseline vs. "After the 2nd dose"; After the 1st dose" vs. [&]quot;After the 2nd dose"; § Complete data from 122 patients; † Complete data from 118 patients.