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Supplementary Table 1 

 

CaseID Age (yrs) Sex BMI Race Donor Type 

6020 60 M 29.8 Caucasian ND 

6102 45 F 35.1 Caucasian ND 

6015 39 F 32.2 Caucasian ND 

6288 55 M 37.7 Caucasian ND 

6009 45 M 30.6 Caucasian ND 

6251 33 F 29.5 Caucasian ND 

6254 38 M 30.5 Caucasian ND 

6234 20 F 25.6 Caucasian ND 

6108 58 M 30.4 Asian T2D 

6127 45 F 30.4 Caucasian T2D 

6139 37 F 45.4 Hispanic/Latino T2D 

6259 57 M 32.3 Caucasian T2D 

6275 48 M 41.0 Hispanic/Latino T2D 

6249 45 F 32.3 Asian T2D 

6252 20 M 37.8 Caucasian T2D 

 

 

Supplementary Table. 1: Human pancreas donors obtained from Network for Pancreatic 

Organ Donors with Diabetes (nPOD). Organ donor information: Age (years), Sex, Body Mass 

Index (BMI), No Diabetes (ND) and Type 2 Diabetes (T2D). 

 

 

 

 

 



Supplementary Figure 1 

 

Supplementary Fig. 1: Characterization of SDHBβKO mice. A: Agarose gel of sdhb DNA 

isolated from tail snips for verification of mouse genotype. B,C: Glucose levels following (B) 

intraperitoneal insulin (0.75 IU/kg) and (C) intraperitoneal glucose (2 mg/kg) administration in 5-

week-old wild-type and Ins2Cre; SDHBf/+ (heterozygous Control) mice (n=9/group). D: 

Representative immunoblot of SDHB protein in islet lysates from 5-week-old wild-type and 
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Ins2Cre; SDHBf/+ (n=3 mice/group). Quantification of SDHB expression normalized to β-actin 

loading control. E: Representative immunofluorescent images pancreatic sections from 5-week-

old wild-type and Ins2Cre; SDHBf/+ mice stained with insulin (red) and glucagon (green). Nuclei 

were counterstained with DAPI. Scale Bar, 50 M. Quantification of insulin and glucagon positive 

areas per islet in pancreatic sections are shown in the adjacent graph (n=3 mice/group). F:  

Percentage of Cre-expressing β-cells. Representative immunofluorescent images of GFP (green) 

and insulin (red) staining in pancreatic sections from 5-week-old fluorescent Cre-reporter mice- 

ROSAmTmG Control and ROSAmTmG SDHBβKO. Quantification of mean %GFP-positive cells within 

insulin+ β-cells ± SD are shown in adjacent graphs (n= five images/mice from 3 mice/group). G: 

Representative immunofluorescent images of SDHB in pancreatic sections from 5-week-old wild-

type, Ins2Cre; SDHBf/+ (heterozygous Control) and Ins2Cre; SDHBf/f (SDHBβKO) mice. 

Quantification of mean staining intensity ± SD within insulin+ β-cells are shown in adjacent graph 

(n= five images/mice from 3 mice/group). Secondary antibody only (2° Ab) serves as no primary 

antibody background control. H: Sex-specific representation of mean random (free-fed) blood 

glucose levels ± SD in female verse male Control and SDHBβKO mice (3-20 weeks), n=20/group. 

I: Mixed gender animal weights (g) of control and SDHBβKO mice at 5 and 20 weeks, n=10-16 

mice/group.  

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 2 

 

Supplementary Fig. 2: Immunofluorescent staining in ND Human Pancreas. Quantification 

of mean SDHB, K-Succ and Sirt5 staining intensity in either the insulin-positive β-cells or insulin-

negative areas (acinar tissue and other islet-cell types) of pancreas sections from human donor 

(n=4-6 islets/donor from n=4-8 donors/group). Data represented as mean ± SD and were analyzed 

by unpaired t-test. *, p<0.05. 
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Supplementary Figure 3 

  

 

Supplementary Fig. 3: Islet Insulin Content.  A: Static insulin secretion response to high glucose 

[16.7 mM] + 20 nM exendin-4 (Ex-4) and basal glucose [5.6 mM] + 20 mM potassium chloride 

(KCl) in isolated islets from 5-week-old Control and SDHBβKO, n=3 mice/group. B: Insulin 

content of 5-week-old Control and SDHBβKO islets used for islet perifusion assay, n=4/group. 
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Supplementary Figure 4 

 

 

Supplementary Fig. 4: Metabolomic analysis.  From 148 identified metabolites, we observed 

significant changes in 50 metabolites (p < 0.05), where 28 were increased (Log2FC ≥ 1) and 22 

were decreased (Log2FC ≥ -1) in SDHBβKO islets. A: Fold-change ± SEM of significantly (p-

value<0.05) downregulated and upregulated metabolites identified in SDHBβKO islets, compared 

to Ins2-Cre SDHBfl/wt (Control) islets, n=5/group. Metabolites are categorized into specific 

metabolic pathways. B: Succinate and fumarate levels (uM) measured by LC-MS/MS in isolated 

islets from 5-week-old Ins2-Cre SDHBfl/wt (Control; n=4) and SDHBβKO mice (n=3). C: Data 

represented as mean ± SD and were analyzed by unpaired t-test. *, p<0.05. Metabolic pathway-

based analysis with differential abundance scores. The differential abundance score captures the 

average, gross changes for all metabolites in a pathway. A score of 1 indicates all measured 

metabolites in the pathway increase, and -1 indicates all measured metabolites in a pathway 

decrease. 
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Supplementary Figure 5 

 

Supplementary Fig. 5: RNA Sequencing in Control and SDHBβKO islets. From 30,447 

identified genes, 385 were differentially expressed in SDHBβKO islets compared to Ins2Cre; 

SDHBf/+ (Control) islets (p < 0.05). Of these, 194 genes were up-regulated and 191 genes were 

down-regulated. A: RNA-seq data quality control metrics: total reads (# of sequences reads) and 

uniquely mapped, duplicates and GC content (as % of total reads). B: Key expression genes 

(Camunas-Soler et al, Cell Metab, 2020) for each islet cell-type identified in transcriptomic 

analysis: α−, β-, δ-, and γ-cells. C: Volcano plot of differentially expressed genes in SDHBβKO 

compared to Control. Red: up-regulated genes (LogFC ≥ 1.2); Blue: down-regulated genes (LogFC 

≥- 1.2). 
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Supplementary Figure 6 

 

 

 

 

 

 

 

 

Supplementary Fig. 6: Pathway Changes of SDHBβKO Islets based on Metabolomics and 

Transcriptomics Analyses. A: Schematic representation of pathway changes. Color corresponds 

to the Log2 fold changes between in SDHBβKO and Ins2Cre; SDHBf/+ (Control) islets. Red, 

increase; blue, decrease; gray, no change; white, not detected/measured. Metabolites are labelled 

as color-coded ovals: A-Coa, acyl-CoA; AcCoA, acetyl-CoA; ACO, cis-aconitate; AKG, alpha-

ketoglutarate; ASP, aspartate; CIT, citrate; DAG, diacylglyceride; DHAP, dihydrxyacetone 

phosphate; F6P, fructose 6-phosphate; FUM, fumarate; G6P, glucose 6-phosphate; G3P, 

glyceraldehyde 3-phosphate; GA3P, glyceraldehyde 3-phosphate; ISC, isocitrate; MAL, malate; 

OAA, oxaloacetate; PYR, pyruvate; SUCCoA, succinyl-CoA; SUC, succinate. Transcript genes 

are labelled as color-coded rectangles: dgat1, diacylglycerol o-acyltransferase 1; fasn, fatty acid 

synthase; gpd1/2, glycerol-3-phosphate dehydrogenase 1/2; slc25a11, 2-oxoglutarate/malate 

carrier; slc25a12, aspartate/glutamate carrier. B: Basal metabolite levels associated with G3P and 

malate-aspartate shuttle in isolated islets from 5-week-old Ins2-Cre SDHBfl/wt (Control) and 

SDHBβKO mice (n=5/group). Data represented as mean ± SD and were analyzed by unpaired t-test. 
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Supplementary Figure 7 

 

Supplementary Fig. 7: Rapamycin reduces succinate levels, ΔΨm and lipid content in 3-NPA- 

and DMS-treated R7T1 β-cells. A: Graphical representation of treatment experiments in R7T1 

β-cell culture. R7T1 β-cells are treated with 3-Nitropropionic acid (3-NPA) and cell-permeable 

dimethyl-succinate (DMS) for 3 days. B: Representative immunoblot of cell lysates from control, 

3-NPA and DMS-treated R7T1 β-cells. β-actin serves as the loading control. Quantification of 

immunoblot as a ratio of p-S6 over phospho-AMPK⍺ shown in adjacent graphs, n=8-9/group from 

three independent experiments. C:  Cellular succinate levels in 3-NPA and DMS-treated R7T1 β-

cells with a 24h vehicle or rapamycin [50 nM] treatment, n=3/group. D: Representative FACS 

analyses of mitochondrial membrane potential (TMRE) in 3-NPA and DMS-treated R7T1 β-cells 

following a vehicle or rapamycin treatment. Median Fluorescence Intensity (MFI) of TMRE 

relative to vehicle control shown in adjacent graph, n=6/group from three independent experiments. 

E: Representative immunofluorescent images of control, 3-NPA and DMS-treated R7T1 β-cells 

stained with Nile Red (red) and insulin (green). Nuclei were counterstained with DAPI. F: 

Representative FACS analyses of Nile Red in control, 3-NPA and DMS-treated R7T1 β-cells after 

a 24h treatment with vehicle or rapamycin. Median Fluorescence Intensity (MFI) of Nile Red is 

shown in adjacent graph, n=4/group from two independent experiments. 
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Supplementary Figure 8 

 

Supplementary Fig. 8: Rapamycin effect on GSIS in vivo. Serum insulin levels following 

intraperitoneal glucose (10 mg/kg) injection in (A) control and (B) SDHBβKO mice, n=12-14/group. 


