
Supplemental Materials 

 

Supplementary Table. 1: Human pancreas donors obtained from Network for Pancreatic Organ 

Donors with Diabetes (nPOD). 

Supplementary Fig. 1: Characterization of SDHBβKO mice. 

Supplementary Fig. 2: Immunofluorescent staining in ND Human Pancreas. 

Supplementary Fig. 3: Islet Insulin Content in Control and SDHBβKO islets.   

Supplementary Fig. 4: Metabolomic analysis in Control and SDHBβKO islets.   

Supplementary Fig. 5: RNA Sequencing in Control and SDHBβKO islets. 

Supplementary Fig. 6: Pathway Changes of SDHBβKO Islets based on Metabolomics and 

Transcriptomics Analyses. 

Supplementary Fig. 7: Rapamycin reduces succinate levels, ΔΨm and lipid content in 3-NPA- 

and DMS-treated R7T1 β-cells. 

Supplementary Fig. 8: Rapamycin effect on GSIS in vivo. 

 

 

 

 

 

 

 

 

 



Supplementary Table 1 

 

CaseID Age (yrs) Sex BMI Race Donor Type 

6020 60 M 29.8 Caucasian ND 

6102 45 F 35.1 Caucasian ND 

6015 39 F 32.2 Caucasian ND 

6288 55 M 37.7 Caucasian ND 

6009 45 M 30.6 Caucasian ND 

6251 33 F 29.5 Caucasian ND 

6254 38 M 30.5 Caucasian ND 

6234 20 F 25.6 Caucasian ND 

6108 58 M 30.4 Asian T2D 

6127 45 F 30.4 Caucasian T2D 

6139 37 F 45.4 Hispanic/Latino T2D 

6259 57 M 32.3 Caucasian T2D 

6275 48 M 41.0 Hispanic/Latino T2D 

6249 45 F 32.3 Asian T2D 

6252 20 M 37.8 Caucasian T2D 

 

 

Supplementary Table. 1: Human pancreas donors obtained from Network for Pancreatic 

Organ Donors with Diabetes (nPOD). Organ donor information: Age (years), Sex, Body Mass 

Index (BMI), No Diabetes (ND) and Type 2 Diabetes (T2D). 

 

 

 

 

 



Supplementary Figure 1 

 

Supplementary Fig. 1: Characterization of SDHBβKO mice. A: Agarose gel of sdhb DNA 

isolated from tail snips for verification of mouse genotype. B,C: Glucose levels following (B) 

intraperitoneal insulin (0.75 IU/kg) and (C) intraperitoneal glucose (2 mg/kg) administration in 5-

week-old wild-type and Ins2Cre; SDHBf/+ (heterozygous Control) mice (n=9/group). D: 

Representative immunoblot of SDHB protein in islet lysates from 5-week-old wild-type and 
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Ins2Cre; SDHBf/+ (n=3 mice/group). Quantification of SDHB expression normalized to β-actin 

loading control. E: Representative immunofluorescent images pancreatic sections from 5-week-

old wild-type and Ins2Cre; SDHBf/+ mice stained with insulin (red) and glucagon (green). Nuclei 

were counterstained with DAPI. Scale Bar, 50 M. Quantification of insulin and glucagon positive 

areas per islet in pancreatic sections are shown in the adjacent graph (n=3 mice/group). F:  

Percentage of Cre-expressing β-cells. Representative immunofluorescent images of GFP (green) 

and insulin (red) staining in pancreatic sections from 5-week-old fluorescent Cre-reporter mice- 

ROSAmTmG Control and ROSAmTmG SDHBβKO. Quantification of mean %GFP-positive cells within 

insulin+ β-cells ± SD are shown in adjacent graphs (n= five images/mice from 3 mice/group). G: 

Representative immunofluorescent images of SDHB in pancreatic sections from 5-week-old wild-

type, Ins2Cre; SDHBf/+ (heterozygous Control) and Ins2Cre; SDHBf/f (SDHBβKO) mice. 

Quantification of mean staining intensity ± SD within insulin+ β-cells are shown in adjacent graph 

(n= five images/mice from 3 mice/group). Secondary antibody only (2° Ab) serves as no primary 

antibody background control. H: Sex-specific representation of mean random (free-fed) blood 

glucose levels ± SD in female verse male Control and SDHBβKO mice (3-20 weeks), n=20/group. 

I: Mixed gender animal weights (g) of control and SDHBβKO mice at 5 and 20 weeks, n=10-16 

mice/group.  

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 2 

 

Supplementary Fig. 2: Immunofluorescent staining in ND Human Pancreas. Quantification 

of mean SDHB, K-Succ and Sirt5 staining intensity in either the insulin-positive β-cells or insulin-

negative areas (acinar tissue and other islet-cell types) of pancreas sections from human donor 

(n=4-6 islets/donor from n=4-8 donors/group). Data represented as mean ± SD and were analyzed 

by unpaired t-test. *, p<0.05. 
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Supplementary Figure 3 

  

 

Supplementary Fig. 3: Islet Insulin Content.  A: Static insulin secretion response to high glucose 

[16.7 mM] + 20 nM exendin-4 (Ex-4) and basal glucose [5.6 mM] + 20 mM potassium chloride 

(KCl) in isolated islets from 5-week-old Control and SDHBβKO, n=3 mice/group. B: Insulin 

content of 5-week-old Control and SDHBβKO islets used for islet perifusion assay, n=4/group. 
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Supplementary Figure 4 

 

 

Supplementary Fig. 4: Metabolomic analysis.  From 148 identified metabolites, we observed 

significant changes in 50 metabolites (p < 0.05), where 28 were increased (Log2FC ≥ 1) and 22 

were decreased (Log2FC ≥ -1) in SDHBβKO islets. A: Fold-change ± SEM of significantly (p-

value<0.05) downregulated and upregulated metabolites identified in SDHBβKO islets, compared 

to Ins2-Cre SDHBfl/wt (Control) islets, n=5/group. Metabolites are categorized into specific 

metabolic pathways. B: Succinate and fumarate levels (uM) measured by LC-MS/MS in isolated 

islets from 5-week-old Ins2-Cre SDHBfl/wt (Control; n=4) and SDHBβKO mice (n=3). C: Data 

represented as mean ± SD and were analyzed by unpaired t-test. *, p<0.05. Metabolic pathway-

based analysis with differential abundance scores. The differential abundance score captures the 

average, gross changes for all metabolites in a pathway. A score of 1 indicates all measured 

metabolites in the pathway increase, and -1 indicates all measured metabolites in a pathway 

decrease. 
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Supplementary Figure 5 

 

Supplementary Fig. 5: RNA Sequencing in Control and SDHBβKO islets. From 30,447 

identified genes, 385 were differentially expressed in SDHBβKO islets compared to Ins2Cre; 

SDHBf/+ (Control) islets (p < 0.05). Of these, 194 genes were up-regulated and 191 genes were 

down-regulated. A: RNA-seq data quality control metrics: total reads (# of sequences reads) and 

uniquely mapped, duplicates and GC content (as % of total reads). B: Key expression genes 

(Camunas-Soler et al, Cell Metab, 2020) for each islet cell-type identified in transcriptomic 

analysis: α−, β-, δ-, and γ-cells. C: Volcano plot of differentially expressed genes in SDHBβKO 

compared to Control. Red: up-regulated genes (LogFC ≥ 1.2); Blue: down-regulated genes (LogFC 

≥- 1.2). 
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Supplementary Figure 6 

 

 

 

 

 

 

 

 

Supplementary Fig. 6: Pathway Changes of SDHBβKO Islets based on Metabolomics and 

Transcriptomics Analyses. A: Schematic representation of pathway changes. Color corresponds 

to the Log2 fold changes between in SDHBβKO and Ins2Cre; SDHBf/+ (Control) islets. Red, 

increase; blue, decrease; gray, no change; white, not detected/measured. Metabolites are labelled 

as color-coded ovals: A-Coa, acyl-CoA; AcCoA, acetyl-CoA; ACO, cis-aconitate; AKG, alpha-

ketoglutarate; ASP, aspartate; CIT, citrate; DAG, diacylglyceride; DHAP, dihydrxyacetone 

phosphate; F6P, fructose 6-phosphate; FUM, fumarate; G6P, glucose 6-phosphate; G3P, 

glyceraldehyde 3-phosphate; GA3P, glyceraldehyde 3-phosphate; ISC, isocitrate; MAL, malate; 

OAA, oxaloacetate; PYR, pyruvate; SUCCoA, succinyl-CoA; SUC, succinate. Transcript genes 

are labelled as color-coded rectangles: dgat1, diacylglycerol o-acyltransferase 1; fasn, fatty acid 

synthase; gpd1/2, glycerol-3-phosphate dehydrogenase 1/2; slc25a11, 2-oxoglutarate/malate 

carrier; slc25a12, aspartate/glutamate carrier. B: Basal metabolite levels associated with G3P and 

malate-aspartate shuttle in isolated islets from 5-week-old Ins2-Cre SDHBfl/wt (Control) and 

SDHBβKO mice (n=5/group). Data represented as mean ± SD and were analyzed by unpaired t-test. 
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Supplementary Figure 7 

 

Supplementary Fig. 7: Rapamycin reduces succinate levels, ΔΨm and lipid content in 3-NPA- 

and DMS-treated R7T1 β-cells. A: Graphical representation of treatment experiments in R7T1 

β-cell culture. R7T1 β-cells are treated with 3-Nitropropionic acid (3-NPA) and cell-permeable 

dimethyl-succinate (DMS) for 3 days. B: Representative immunoblot of cell lysates from control, 

3-NPA and DMS-treated R7T1 β-cells. β-actin serves as the loading control. Quantification of 

immunoblot as a ratio of p-S6 over phospho-AMPK⍺ shown in adjacent graphs, n=8-9/group from 

three independent experiments. C:  Cellular succinate levels in 3-NPA and DMS-treated R7T1 β-

cells with a 24h vehicle or rapamycin [50 nM] treatment, n=3/group. D: Representative FACS 

analyses of mitochondrial membrane potential (TMRE) in 3-NPA and DMS-treated R7T1 β-cells 

following a vehicle or rapamycin treatment. Median Fluorescence Intensity (MFI) of TMRE 

relative to vehicle control shown in adjacent graph, n=6/group from three independent experiments. 

E: Representative immunofluorescent images of control, 3-NPA and DMS-treated R7T1 β-cells 

stained with Nile Red (red) and insulin (green). Nuclei were counterstained with DAPI. F: 

Representative FACS analyses of Nile Red in control, 3-NPA and DMS-treated R7T1 β-cells after 

a 24h treatment with vehicle or rapamycin. Median Fluorescence Intensity (MFI) of Nile Red is 

shown in adjacent graph, n=4/group from two independent experiments. 
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Supplementary Figure 8 

 

Supplementary Fig. 8: Rapamycin effect on GSIS in vivo. Serum insulin levels following 

intraperitoneal glucose (10 mg/kg) injection in (A) control and (B) SDHBβKO mice, n=12-14/group. 


