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UKB phenotype definition  

Myocardial infarction (MI). Cases of MI were identified by the International Classification of 

Disease, Ninth and Tenth Revision (ICD-10) code families I21, I22, and I23 (Acute, subsequent, 

and complications of MI). The primary source was UKB’s fields 131298, 131300, and 131302 

(Date I21/I22/I23 first reported, respectively). These fields gather information from hospital 

admissions, death records, primary care, and self-reported outcomes from surveys taken at UK 

Biobank assessment centers at initiation into the study and map them to three-digit ICD-10 

categories. To obtain the most up-to-date information, we also gathered these ICD-10 code 

families directly from hospital admission and death records. We also included cases of MI 

identified through UKB’s algorithmically defined outcome (field 42000). Controls were required 

to have no evidence of certain cardiovascular diseases. 

Unstable angina. Cases of unstable angina were identified by the ICD-10 code I20.0, extracted 

from hospital admissions and death records. 

Ischemic stroke (Stroke infarct). Cases of ischemic stroke were identified in a manner similar 

to MI, using a combination of UKB’s first occurrence field 131366 (Date I63 first reported 

(cerebral infarction), the algorithmically defined outcome for ischemic stroke (field 42008), and 

the ICD-10 code I63 in hospital admission or death records. Controls were required to have no 

evidence of cerebrovascular disease (ICD10 codes I6*, G45*, G46*).  

Stroke (Stroke any). Stroke was taken to be the first occurrence of either ischemic or 

hemorrhagic stroke, or of unspecified stroke via UKB fields 42006 (algorithmically defined 

stroke), 131368 (unspecified stroke), or ICD10 code I64. Controls were required to have no 

evidence of cerebrovascular disease (ICD10 codes I6*, G45*, G46*). 



Percutaneous coronary intervention (PCI). Cases of PCI were identified through OPCS4 

codes K40, K41, K42, K43, K44, K45, K46, K483, K49, K501, K75, K76, and UKB self-report 

codes 1070 (coronary angioplasty) and 1095 (coronary bypass grafts). Controls were not to have 

self-reported any non-coronary revascularization procedures. 

Composite CVD (CVD). A composite CVD event consisted of either MI, ischemic stroke, 

unstable angina, or PCI. The first date of CVD was taken as the first date of any of these events. 

Controls were required to satisfy all the conditions for each component outcome. 

Macroalbuminuria/Microalbuminuria. Urine Albumin:Creatinine ratio (UACR) was 

calculated using UKB fields 30700 (urine creatinine), 30500 (urine microalbumin), and 30505 

(reason for missing urine microalbumin).  UACR above 33.9 was considered macroalbuminuria, 

while above 3.4 was considered microalbuminuria. In cases where urine microalbumin was 

below detectable levels, albuminuria status was inferred from urine creatinine where possible.  

Chronic/Diabetic kidney disease (DKD). DKD was identified through UKB’s algorithmically 

defined end-stage renal disease (field 42026, previously described), ICD10 codes E1*.2 (diabetes 

mellitus with renal complications),  E18[0345] (chronic kidney disease stage 3-5, end-stage), 

N08.3 (glomerular disorders in diabetes mellitus) in hospital or death records, self-reported 

diabetic kidney disease, two or more consecutive eGFR (EPI creatinine) < 60 mL/min/1.73m2 

measured 90+ days apart from either UK Biobank Assessment Center or primary care data. The 

date of the first DKD was taken as the first occurrence of any of the previous codes/events. 

Controls were required not to have micro/macroalbuminuria or a list of exclusion codes. Controls 

were required to have at least five years of follow-up since their diabetes diagnosis, and cases 

were required to have more than five years between their date of diabetes diagnosis and first 

DKD. 



Diabetic eye disease (DR). DR was determined using the ICD10 codes E1*.3 (diabetes mellitus 

with ophthalmic complications), H36.0 (diabetic retinopathy), and H28.0 (Diabetic Cataract), as 

well as a set of primary care codes.  Since most cases were identified through primary care data, 

controls were required to have this data available in order to reduce misclassification. Controls 

were also required not to have glaucoma, cataract, or non-diabetic/unspecified retinopathy. 

 

  



Additional figures and tables  

 

 
Supplemental Figure 1. Diagram depicting a flow of participants used in the UKB analyses. 

DM, diabetes mellitus. NHW, non-Hispanic white. 

 

 



 
Supplemental Figure 2. Diagram depicting a flow of participants used in the ACCORD analyses.  

DM, diabetes mellitus. NHW, none-Hispanic white. 

  



 

Supplemental Figure 3. Heritability estimates and standard errors of diabetes complication 

outcomes using the ACCORD genotype data and incorporating interaction with intensive 

glycemic treatment.   

The grey bar represents the genetic plus interaction components, while the white bar signifies the 

interaction component. V(G), genetic variance. V(GxT), variance for interaction between 

genetics and intensive treatment. Vp, phenotypic variance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4. Manhattan plots of GWAS p-values for the UKB phenotypes.  

The red line signifies a genome-wide significance level (p = 5×10-8), while the blue line is a 

suggestive line (p = 1×10-5).  

 

 

 

 

 

 

 



 

 

 

 

 

Supplemental Figure 5. QQ plots of GWAS p-values for the UKB phenotypes. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 6. Manhattan plots of GWAS p-values for the ACCORD phenotypes. 

The red line signifies a genome-wide significance level (p = 5×10-8), while the blue line is a 

suggestive line (p = 1×10-5).  



Supplemental Figure 7. QQ plots of GWAS p-values for the ACCORD phenotypes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 8. Enrichment of the ACCORD microvascular complication phenotypes in 

tissue-specific gene expression annotations used in Finucane et al. (17).  

The black dashed lines indicate the Bonferroni significance threshold (p < 0.05/53). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 9. Enrichment of the ACCORD macrovascular complication phenotypes in 

tissue-specific gene expression annotations used in Finucane et al. (1). 

The black dashed lines indicate the Bonferroni significance threshold (p < 0.05/53). 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 10. Enrichment of the UKB microvascular complication phenotypes in tissue-

specific gene expression annotations used in Finucane et al. (1). 

The black dashed lines indicate the Bonferroni significance threshold (p < 0.05/53). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Supplemental Figure 11. Enrichment of the UKB macrovascular complication phenotypes in 

tissue-specific gene expression annotations used in Finucane et al. (1). 

The black dashed lines indicate the Bonferroni significance threshold (p < 0.05/53). 

 



 

 

 

Supplemental Figure 12. Enrichment estimates for selected annotations and traits using the (A) 

UKB and (B) ACCORD imputed data. 

The dashed line represents no enrichment (enrichment=1). One asterisk indicates nominal 

significance at p < 0.05. Enrichment = Pr(h2)/Pr(SNPs). TFBS, Transcription factor binding site. 

DHS, DNase I hypersensitivity sites. 

  



 

 Neph1 Neph2 Neph4 Neph5 Retin1 

primary -0.54 (0.41) 0.12 (0.43) -0.53 (0.40) 0.14 (0.42) -0.52 (0.39) 

Neph1  0.47 (0.62) 0.96 (0.05) 0.25 (0.57) 0.19 (0.50) 

Neph2   0.49 (0.57) 0.11 (0.62) 0.70 (0.67) 

Neph4    0.33 (0.56) 0.32 (0.51) 

Neph5     0.52 (0.59) 

 

Supplemental Table 1. Genetic correlation estimates and the standard errors between selected 

phenotypes using the ACCORD genotype data.  

Adjusted for sex, CVD history at baseline, age at baseline, and the top five genetic principal 

components. 

  



 

 DKD Microalbuminuria DR 

CVD 0.25 (0.28) -0.11 (0.24) 0.26 (0.25) 

DKD  0.36 (0.27) 0.35 (0.35) 

Microalbuminuria   0.07 (0.25) 

 

Supplemental Table 2. Genetic correlation estimates and the standard errors between selected 

phenotypes using the UKB genotype data.  

Adjusted for sex, age in 2010, and the top ten genetic principal components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methods 

Genotyping in UKB and ACCORD  

UKB. Genome-wide genotyping was performed on all UK Biobank participants using the UK 

Biobank Axiom Array.  

ACCORD. After downloading the data from dbGap (Study Accession: phs001411.v1.p1), we 

used genetic variants genotyped on Affymetrix Axiom Biobank 1 chips from the University of 

North Carolina (UNC) and merged data under two different institutional review board (IRB) 

protocols—HMB-IRB (73941) and DS-CDKD-IRB (73944). There were 6,291 (2,335 females 

and 3,956 males) with 546,800 SNPs in the merged dataset. Based on self-reported ethnicity, 

there were 4,369 non-Hispanic whites (NHW), 935 African-Americans (AA), 381 Hispanics, and 

606 others. We checked the validity of self-reported ethnicity by running the ADMIXTURE 

software (2) with K=4, categorizing each individual into a group with the highest probability, 

and comparing the categories against self-reported ethnicity (see Supplemental Figure 13). We 

can infer that the ADMIXTURE ancestry groups 1, 2, 3, and 4 represent NHW, AA, Other, and 

Hispanic, respectively. Considering that Hispanics are a highly genetically heterogeneous 

admixed group, the distribution in ADMIXTURE ancestry group 4 (Supplemental Figure 13) 

appears reasonable.  

 



 

Supplemental Figure 13. Bar graph indicating the percentage of self-reported ethnicity groups 

categorized into each ADMIXTURE bin.  

Each individual is binned based on the largest proportion from ADMIXTURE.  

 

 

  



Heritability estimation using genotype data 

UKB. We extracted the NHW diabetes cohort (n=26,387) and computed the GRM via the REAP 

approach, for which necessary proportions were obtained from the ADMIXTURE software with 

K=3. No individuals were pruned out under the relatedness threshold (0.1768). We estimated 

heritability using the GREML-SC approach while adjusting for sex, age in 2010, and the top ten 

genetic principal components. Also calculated using the UKB genotype data were genetic 

correlations between phenotypes (see Supplemental Table 2).  

ACCORD. We calculated a Genetic Relationship Matrix (GRM) using SNPs from all 

autosomes. The GRM uses SNP data to measure the relatedness between each pair of individuals 

in our sample. This GRM replaces the known information about relatedness found in pedigrees. 

While the ACCORD trial did not deliberately recruit related individuals, we took a step to avoid 

inflation caused by cryptic (i.e., unknown) relatedness. We selectively excluded one of any pair 

of individuals with an estimated kinship greater than the separation between full and half-

siblings (estimated kinship > (1/2)5/2= 0.1768) in a way to maximize the remaining sample size 

(3; 4). Initially, we used the software package Genome-wide Complex Trait Analysis (GCTA) 

(5) to construct the GRM. However, the degree of relatedness calculated by GCTA appeared 

inflated (See Supplemental Figure 14). The inflation may be mainly due to population 

heterogeneity in the data. Next, we tried Kinship-based INference for Genome-wide association 

studies (KING) (3). As seen in Supplemental Figure 14, estimated kinship-coefficient values 

from KING were systematically negative, which ultimately led the GRM to be not positive semi-

definite. Finally, we used Relatedness Estimation in Admixed Populations (REAP) (6), which 

produced more robust results. The REAP approach requires individual ancestry proportions and 

allele frequencies for each ancestral population. Both proportions were obtained using the 



ADMIXTURE software (2) with the number of ancestral populations specified as four (K=4). 

The number four was chosen because there were four different self-reported ethnic groups 

(NHW, AA, Hispanic and other).  

We only extracted NHW samples after pruning related individuals, leaving us with 4,329 

samples. With the GRM constructed from REAP, heritability was estimated via GCTA (4). We 

adjusted for sex, CVD history at baseline, age at baseline, and the top five genetic principal 

components. An additional analysis that incorporated interaction with glycemic intensive 

treatment arm (intensive=1, standard=0) is shown in Supplementary Figure 3. We also estimated 

the genetic correlation between binary traits via the GCTA software (4; 8), including sex, CVD 

history at baseline, age at baseline, and the top five genetic principal components as covariates. 



 

 

 

 

Supplemental Figure 14. Estimated kinship coefficients from software packages GCTA, KING, 

and REAP.  

Estimates from GCTA have been divided by 2 for comparability with other packages. 

 

  



Imputation 

UKB. We used the imputed datasets released by UK Biobank. After extracting autosomal 

variants with imputation info score > 0.3 and removing multiallelic variants from the imputed 

datasets, we excluded variants with missing genotype rate > 0.05, HWE test p < 1×10-6, and 

MAF < 0.0001. After the filtering steps, we had a total of 33,932,888 variants. 

ACCORD. Prior to imputation, we performed quality control steps on the data. First, we 

checked if there are mismatches between genetic gender and clinical gender. We ran plinkv1.9 --

check-sex option along with --split-x and made an F-statistic against sex-label plot (see  

Supplemental Figure 15). As expected, we saw a big tight clump near 1 for males while a more 

widely dispersed set of values centered near 0 (7). Even though some individuals did not pass the 

default threshold set in plink, we decided not to remove any individuals since the data exhibit an 

expected pattern. 

     Next, following the procedure in (4), we computed Hardy-Weinberg equilibrium (HWE) 𝜒2 

values for each of the self-reported ethnicity groups: NHW, AA, Hispanic, and other. Any SNPs 

deviating from p value 1×10-5 in at least two of the four groups were excluded. This step reduced 

the number of variants to 542,847. Additionally, we checked alleles to allow only A, C, G, T and 

excluded SNPs with a missing rate > 3% and monomorphic sites (MAF < 0.0000001). We also 

excluded individuals with a genotype missing rate > 0.03. After the aforementioned step, we 

retained 6,279 individuals and 465,011 variants.  

     Data imputation was done using a two-step approach where the genotype calls were pre-

phased using Eagle v2.4.1 (8) and then imputation was done using Minimac4 (9) with default 

options. Both steps used the 1000 Genomes Project Phase 3 (10) as a reference panel. 



After discarding imputed variants with R2 < 0.3 and MAF < 0.0003, we had a total of 25,667,109 

imputed variants for the downstream analyses. Additionally, we extracted the NHW samples 

filtered from the REAP approach earlier (n=4,329). With 11 out of 4,329 individuals removed 

during the pre-imputation QC steps, we proceeded with the downstream analyses with 4,318 

NHW individuals.  

  



 

 

Supplemental Figure 15. Distribution of F (inbreeding) coefficients against clinical gender. 

  



GREML-LDMS 

On the imputed datasets, we employed the GREML-LDMS method. For the GREML-LDMS-I 

approach, we followed the design laid out in (11). First, we calculated segment-based LD scores 

using the default settings—200-kb block size with a 100-kb overlap—using the GCTA software 

and stratify SNPs into high LD and low LD score groups using the median as a threshold. In 

each LD group, SNPs were further partitioned into four MAF bins: common (MAF ≥ 0.05), 

uncommon (0.01 ≤ MAF < 0.05), rare (0.0025 ≤ MAF < 0.01), and very rare (0.0003 ≤ MAF <

 0.0025). Then GRMs were computed using SNPs stratified into eight groups, hence creating 

eight GRMs. Finally, we ran GREML analyses on each binary phenotype with fixed covariates.    

UKB. On the UKB imputed datasets, we adjusted for sex, age in 2010, and the top ten genetic 

principal components. 

ACCORD. After filtering steps, the ACCORD imputed dataset contained 4,318 NHW 

individuals and 15,349,988 variants. We included sex, age at baseline, history of CVD at 

baseline, and the top five genetic principal components as covariates.  

 

  



GWAS 

UKB. GWAS for complications was performed in 26,387 NHW samples. After MAF filtration 

(MAF ≥ 0.01), 8,949,996 variants formed the GWAS panel. We adjusted for sex, age in 2010, 

and the top ten genetic principal components. Manhattan and QQ plots are provided in 

Supplemental Figure 4 and Supplemental Figure 5 and respectively. 

 

ACCORD. GWAS for complications were performed in 4,318 NHW participants. After 

filtration for variants with MAF ≥ 0.01, as done in Bulik-Sullivan et al. (12), 8,480,081 SNPs 

formed the GWAS panel. The association between each variant and each complication was 

tested by logistic regression in PLINK2.0 (7), assuming an additive genetic model and adjusting 

for sex, CVD history at baseline, age at baseline, and the top five genetic principal components. 

Manhattan and quantile-quantile (QQ) plots are provided in Supplemental Figure 6 and 

Supplemental Figure 7, respectively. 

  



Stratified LD score regression (S-LDSC) 

We partitioned SNP heritability, applying S-LDSC to GWAS summary statistics for the trait of 

interest. We conducted S-LDSC analysis using the ‘full baseline model’ generated by Finucane 

al. (13). The full baseline model is comprised of 53 overlapping functional categories (including 

coding, promoter, enhancer, and conserved regions) and is not specific to any cell type. We also 

conducted tissue-type specific analyses where we used the 53 specifically expressed gene 

annotations curated from the Genotype-Tissue Expression (GTEx) project (14) by Finucane et al. 

(1). For all S-LDSC analyses, we used 1000 Genomes Project Phase 3 (10) European population 

SNPs as an LD reference panel. All annotations and reference panel data were obtained from 

Alkes Price’s group data repository (see URLs). 

  



URLs 

Baseline LDSC annotations, https://data.broadinstitute.org/alkesgroup/LDSCORE/; Finucane 

GTEx annotations, https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/; 

LDSC, https://github.com/bulik/ldsc/wiki. 
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