Supplemental Material

Rare variant analysis of obesity-associated genes in young adults with severe obesity from a consanguineous population of Pakistan

Running title: Consanguinity and obesity linked rare variants

Sadia Saeed^{1,2,3†}, Qasim M Janjua⁴, Attiya Haseeb⁵, Roohia Khanam⁵, Emmanuelle Durand^{2,3}, Emmanuel Vaillant^{2,3}, Lijiao Ning^{2,3}, Alaa Badreddine^{2,3}, Lionel Berberian^{2,3}, Mathilde Boissel^{2,3}, Souhila Amanzougarene^{2,3}, Mickaël Canouil^{2,3}, Mehdi Derhourhi^{2,3}, Amélie Bonnefond^{1,2,3*†}, Muhammad Arslan^{5*}, and Philippe Froguel^{1,2,3*†}

¹Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; ²Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France, ³University of Lille, Lille University Hospital, Lille, France; ⁴Department of Physiology and Biophysics, National University of Science and Technology, ⁵School of Life Sciences, Forman Christian College, Lahore, Pakistan

*These authors contributed equally Correspondence: <u>s.saeed08@imperial.ac.uk (</u>S.S.) Tel +44 20 759 46537 <u>amelie.bonnefond@cnrs.fr (A.B.)</u> Tel +33 37 400 8118 <u>p.froguel@imperial.ac.uk (P.F.) Tel +</u>33 37 400 8100

Supplementary Tables

SOPP-Young Adults conort ($n = 128$) and age-matched controls (n=50)		
Characteristics	SOPP – Young adults	Control subjects
Age (year)	18.4 ± 0.3^{a}	17.7 ± 0.3
Sex (M/F)	78 / 50	38/12
Height (cm)	163.9 ± 1.1	160.2 ± 4.2
Weight (kg)	101.0 ± 1.7***	63.1 ± 4.7
BMI (kg/m²)	37.2 ± 0.3***	19.0 ± 0.4
Insulin (µIU/ml)	30.4 ± 2.8***	10.0 ± 1.1
Leptin (ng/ml)	$36.4 \pm 1.6^{***}$	2.2 ± 0.2
Cortisol (µg/dl)	$20.0 \pm 0.8^{***}$	11.3 ± 0.3

Supplementary Table 1. Physical and biochemical characteristics of the SOPP–Young Adults cohort (n = 128) and age-matched controls (n=50)

^a Mean±SEM

Significantly different from control values *****P*<0.001 (Student t test)

F, female; M, male

Family history of obesity (%)

Family history of diabetes (%)

(In the SOPP children cohort 42.7% and 53% were reported with family history of obesity and diabetes, respectively).

44.3

30.3

0.0

4.0

Gene	Name	Location	Mendelian disorder	NM transcript
ALMS1	ALMS1, centrosome and basal body	2p13.1	Obesity &	NM_015120.4
	associated protein	-	syndromic features	
ADCY3	Adenylate Cyclase 3	2p23.3	Obesity &	NM_004036.4
			syndromic features	
BBS1	Bardet-Biedl syndrome 1	11q13.2	Obesity &	NM_024649.4
		_	syndromic features	
BBS10	Bardet-Biedl syndrome 10	12q21.2	Obesity &	NM_024685.3
			syndromic features	
BBS12	Bardet-Biedl syndrome 12	4q27	Obesity &	NM_152618.2
			syndromic features	
BBS2	Bardet-Biedl syndrome 2	16q13	Obesity &	NM_031885.3
			syndromic features	
BBS4	Bardet-Biedl syndrome 4	15q24.1	Obesity &	NM_033028.4
			syndromic features	
BBS5	Bardet-Biedl syndrome 5	2q31.1	Obesity &	NM_152384.2
			syndromic features	
BBS7	Bardet-Biedl syndrome 7	4q27	Obesity &	NM_176824.2
			syndromic features	
BBS9	Bardet-Biedl syndrome 9	7p14.3	Obesity &	NM_001033604.1
			syndromic features	
BDNF	brain derived neurotrophic factor	11p14.1	Obesity &	NM_170735.5
			syndromic features	
CEP19	centrosomal protein 19	3q29	Obesity &	NM_032898.4
			syndromic features	
CEP290	centrosomal protein 290	12q21.32	Obesity &	NM_025114.3
			syndromic features	
LEP	Leptin	7q32.1	Obesity	NM_000230.2
LEPR	leptin receptor	1p31.3	Obesity	NM_002303.5
MC4R	melanocortin 4 receptor	18a21.32	Obesity	NM 005912.2
MKKS	McKusick Kaufman syndroma	20n12.2	Obosity &	NM 018848 3
MIKKS	Werkusiek-Kaufman syndrome	20012.2	syndromic features	NWI_010040.5
MKCI	Maakal syndroma typa 1	17922	Obosity &	NM 017777 3
MASI	Weeker syndrome, type 1	17422	syndromic features	NWI_01////.3
MRAP?	melanocortin 2 recentor accessory	6a1/1 2		NM 138/09/2
MINAL 2	protein 2	0414.2	Obesity	NWI_130409.2
NTRK?	neurotrophic receptor tyrosine kinase 2	9a21 33	Obesity &	NM 0061804
IVI MAZ	neurotrophie receptor tyroshie kilase 2	Jq21.55	syndromic features	1111_000100.4
PCSK1	proprotein convertase subtilisin/keyin	5a15	Obesity	NM 000/39/
I CSKI	type 1	5415	Obesity	1101 <u>0</u> 00 4 57.4
POMC	proopiomelanocortin	2n233	Obesity	NM_001035256.1
	SUOD a dant transmitte in 1	2p25.5	Obseites ⁰ in 1	NIM 001209202 1
2H2R1	SH2B adaptor protein 1	10011.2	Obesity & insulin	NM_001308293.1
CD 41		6.160	resistance	ND COCOCO C
SIMT	SIM BHLH Transcription Factor 1	6q16.3	Obesity & Prader-	NM_005068.3
TUP	tubby bipartite transcription factor	11n15 /	WIIII-LIKE	NM 003320 4
IUD	abby orpartite transcription factor	11/13.4	syndromic features	11111_003320.4
VPS13R	vacuolar protein sorting 13 homolog R	8a22.2	Intellectual	NM 0178904
	r r	- 1	disability & obesity	

Supplementary Table 2. List of genes in which point mutations were shown to cause monogenic obesity

Supplementary Table 3: ACMG criteria for classifying pathogenic or likely pathogenic variants in the present study

Evidence of pathogenicity		Category		
Very strong	PVS1	Null variant (nonsense, frameshift, initiation codon)		
Strong	PS1	Same amino acid change as a previously established pathogenic variant regardless of nucleotide change, <i>i.e.</i> Val→Leu caused by either G>C or G>T in the same codon (according to ClinVar ["likely pathogenic" or "pathogenic"] or HGMD database ["disease causing"])		
Strong	PS3	Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product (according to HGMD database [functional characterization])		
Moderate	PM1	Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation (according to ClinVar or HGMD database)		
Moderate	PM2	Extremely rare in the general population (i.e. with less than one carrier according to gnomAD database [v2.1.1] [please see the number of homozygotes for genes following a recessive inheritance like <i>PCSK1</i>])		
Moderate	PM5	Missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before (according to ClinVar or HGMD database)		
Supporting	PP2	Variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease		
Supporting	PP3	Multiple lines of computational evidence (using PolyPhen-2 (HumDiv), SIFT and Mutation Taster) support a deleterious effect of the missense variant		
Supporting	PP4	Patient's phenotype or family history is highly specific for a disease with a single etiology		

Supplementary '	Table 4: Rules for combining ACM	IG criteria to classify	sequence variants
as pathogenic or	likely pathogenic		

	(i)	1 Very Strong (PVS1) AND			
			(8	a)	≥ 1 Strong (PS#) <i>OR</i>
			(1	b)	≥ 2 Moderate (PM#) <i>OR</i>
Pathogenic			(0	c)	1 Moderate (PM#) and 1 Supporting (PP#) OR
			(0	d)	2 Supporting (PP2 and PP3)
		(ii)	2 Strong (PS1 and PS3) OR		
	PP3)	(iii)	1 Strong	(PS#),	, 2 Moderate (PM#) and 2 Supporting (PP2 and
		(i)	1 Very St	trong (PVS1) and 1 Moderate (PM#) OR
		(ii)	1 Strong (PS#) and 1-2 Moderate (PM#) OR		
Likely pathogenic		(iii)	1 Strong and 2 Supporting (PP2 and PP3) OR		
		(iv)	≥ 3 Moderate (PM#) <i>OR</i>		
		(v)	2 Moderate (PM#) and 2 Supporting (PP2 and PP3)		

Supplementary Table 5. Physical and biochemical characteristics of subjects carrying mutations in genes linked with monogenic obesity (SOPP – Young Adults cohort) (n = 26)

Characteristics	Carriers
Age (year)	19.4 ± 0.5°
Sex (M/F)	18 / 8
Height (cm)	165.7 ± 2.4
Weight (kg)	105.1 ± 3.6
BMI (kg/m²)	38.0 ± 0.8
Insulin (μIU/mI)	26.5 ± 4.3
Leptin (ng/ml)	33.8 ± 3.8
Cortisol (µg/dl)	18.2 ± 1.5

^a Mean±SEM

F, female; M, male

Supplementary Figure 1. Family tree of probands with mutations in genes linked with monogenic obesity among the SOPP – Young Adults cohort

In case of probands Q26 and M57, access to samples from family members were available. In rest of the cases the obesity status indicated in the pedigrees is as reported at the time of recruitment. A double line indicates first or second-degree cousin marriages