Adipocyte-specific modulation of KLF14 expression in mice leads to sex-dependent impacts on adiposity and lipid metabolism

Running title: KLF14 is sex-dimorphic in mouse metabolism

Qianyi Yang¹, Jameson Hinkle¹, Jordan N. Reed^{1,2}, Redouane Aherrahrou¹, Zhiwen Xu³, Thurl E. Harris⁴, Erin J. Stephenson⁵, Kiran Musunuru^{6,7,8}, Susanna R. Keller⁹, Mete Civelek^{1,2}

¹Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.

²Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22908, USA.

³Department of Chemistry, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22908, USA.

⁴Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.

⁵Department of Anatomy, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.

⁶Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.

⁷Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.

⁸Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.

⁹Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.

Corresponding authors:

Qianyi Yang, Ph.D. and Mete Civelek, PhD

University of Virginia

Center for Public Health Genomics

Old Med School 3836

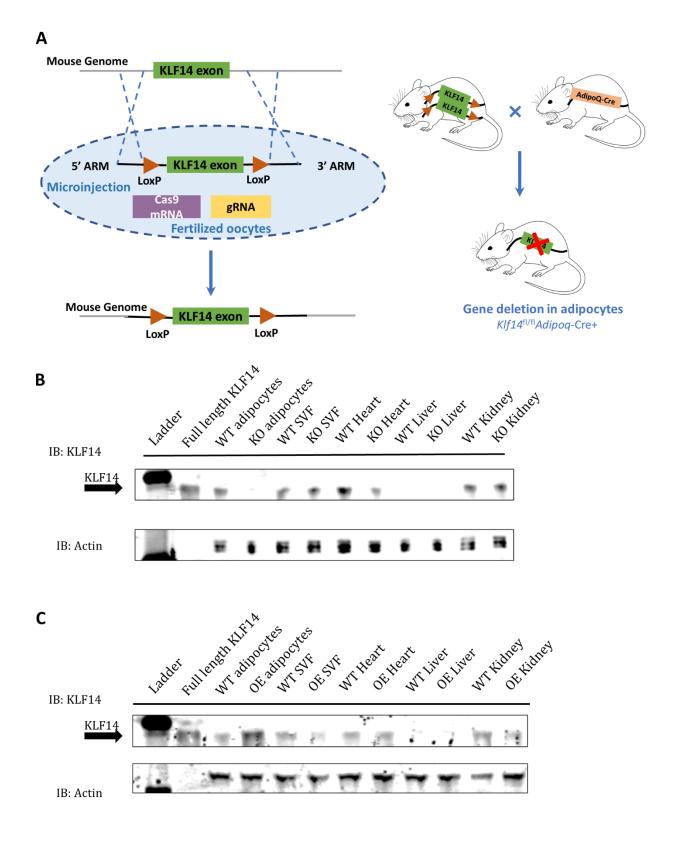
PO Box 800717

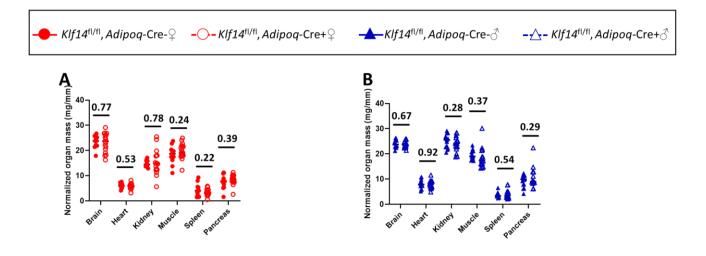
Charlottesville, VA 22908-0717

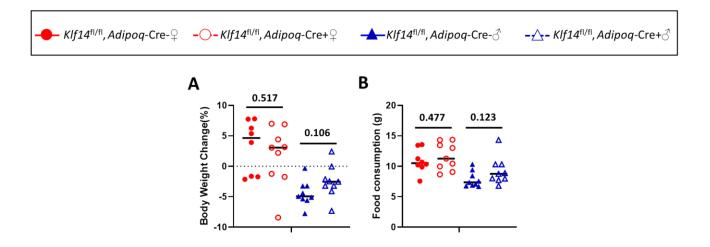
Office Number: 434-243-1669

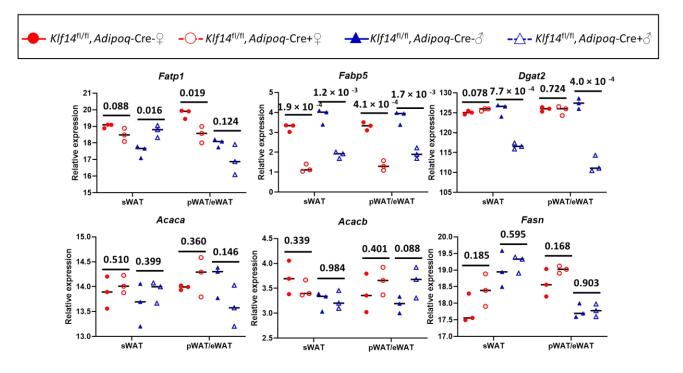
Fax Number: 434-982-1815

E-mail: qy5sy@virginia.edu and mete@virginia.edu

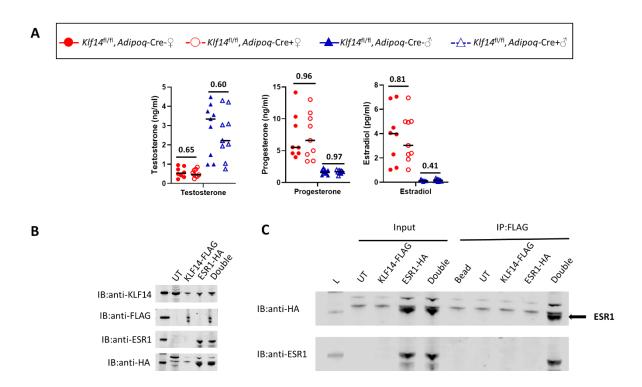

Word count: 6483


Number of tables: 2 (supplemental)


Number of figures: 8 main figures and 5 supplemental figures


SUPPLEMENTAL FIGURES:

Supplemental Figure 1



Supplemental Figure 5

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1: Characterization of transgenic mice. (**A**) Targeting strategy for deletion of Klf14 in mouse adipocytes. (**B**) KLF14 protein level in adipocytes, stromal vascular fraction (SVF), heart, liver and kidney of wild-type (WT) and knockout (KO) mice. (**C**) KLF14 protein level in adipocytes, stromal vascular fraction (SVF), heart, liver and kidney of wild-type (WT) and overexpression (OE) mice.

Supplemental Figure 2: Tissue weights normalized to tibia length in adipocyte-specific *Klf14* knockout and wild type (**A**) female and (**B**) male mice. $N_{\text{Female}, Adipoq-\text{Cre-}} = 11$, $N_{\text{Female}, Adipoq-\text{Cre+}} = 17$, $N_{\text{Male}, Adipoq-\text{Cre-}} = 14$, $N_{\text{Male}, Adipoq-\text{Cre+}} = 14$.

Supplemental Figure 3: (**A**) Body weight change and (**B**) food consumption during the three-day period in metabolic cages. N_{Female_Adipoq-Cre-} =8, N_{Female_Adipoq-Cre+} =9, N_{Male_Adipoq-Cre-} =9, N_{Male_Adipoq-Cre+} =9.

Supplemental Figure 4: mRNA expression of fatty acid uptake and metabolism genes *Fatp1*, *Fabp5*, *Dgat2*, *Acaca*, *Acacb*, *Fasn* and in isolated mature adipocytes. N =3 mice per genotype and sex. Relative gene expression, normalized to GAPDH levels, was calculated using the $2^{-\Delta\Delta CT}$ method. *P*-values were calculated using two-tailed unpaired Student's t -test.

Supplemental Figure 5: (**A**) Sex hormone Testosterone, Progesterone and Estradiol levels in serum of adipocyte *Klf14*-deficient female and male mice and control littermates at euthanasia after 21 weeks of HFD. N_{Female_Adipoq-Cre-} =8, N_{Female_Adipoq-Cre+} =9, N_{Male_Adipoq-Cre-} =9, N_{Male_Adipoq-Cre+} =9. (B) KLF14, FLAG, ESR1 and HA levels were measured in HEK293 cells that are untransfected (UT) or transfected with either *KLF14-FLAG* or *ESR1-HA* or both. (C)Abovementioned HEK293 cells were immunoprecipitated with FLAG antibody-conjugated magnetic beads. Samples were immunoblotted with anti-ESR1 or anti-HA antibodies. Supplemental table 1: Mouse genotyping primer list.

Name	Forward	Reverse	Amplicon
Adipoq_Klf14_Cre	GAACCTGATGGACATGTTCAGG	AGTGCGTTCGAACGCTAGAGCCTGT	250bp
Adipoq_Klf14_OE	GGCCTACTACAAGTCGTCGC	CCGGGCTGCAGGAATTCGAT	489bp

Supplemental table 2: qPCR primer list.

Gene	Forward	Reverse	Accession ID	Reference
Fatp1	GGCTCCTGGAGCAGGAACA	ACGGAAGTCCCAGAAACCAA	NM_011977.4	(1)
Fatp4	ACGATGTTTCCTGCTGAGTGGTA	CTCTCCGACCTGCCACAGA	NM_011989.5	(1)
Fabp4	ATGTGCGACCAGTTTGTG	TTTGCCATCCCACTTCTG	NM_024406.3	(2)
Fabp5	GCTGATGGCAGAAAAACTCAGA	CCTGATGCTGAACCAATGCA	NM_001272098.1	(3)
Acc1	CCTCCGTCAGCTCAGATACA	TTTACTAGGTGCAAGCCAGACA	NM_133360.2	(4)
Fasn	GCTGCGGAAACTTCAGGAAAT	AGAGACGTGTCACTCCTGGACTT	NM_007988.3	(5)
Acc2	ACAGAGATTT CACCGTTGCGT	CGCAGCGATGCCATTGT	NM_133904	(6)
Dgat1	ACCGCGAGTTCTACAGAGATTGGT	ACAGCTGCATTGCCATAGTTCCCT	NM_010046.3	(7)
Dgat2	TGGGTCCAGAAGAAGTTCCAGAAGTA	ACCTCAGTCTCTGGAAGGCCAAAT	NM_026384.3	(7)
Hsl	GCTGGGCTGTCAAGCACTGT	GTAACTGGGTAGGCTGCCAT	NM_001039507.2	(8)
Atgl	TGTGGCCTCATTCCTCCTAC	TCGTGGATGTTGGTGGAGCT	NM_001163689.1	(8)
Gapdh	CTCCCACTCTTCCACCTTCG	GCCTCTCTTGCTCAGTGTCC	NM_001289726.1	(9)

1. Mishima T, Miner JH, Morizane M, Stahl A, Sadovsky Y. The Expression and Function of Fatty Acid Transport Protein-2 and -4 in the Murine Placenta. PLoS One [Internet]. 2011 Oct 20 [cited 2021 Jun 14];6(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197585/

2. Gan L, Liu Z, Cao W, Zhang Z, Sun C. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes. Sci Rep [Internet]. 2015 Aug 27 [cited 2021 Jun 14];5(1):13588. Available from: https://www.nature.com/articles/srep13588

3. Senga S, Kawaguchi K, Kobayashi N, Ando A, Fujii H. A novel fatty acid-binding protein 5-estrogenrelated receptor α signaling pathway promotes cell growth and energy metabolism in prostate cancer cells. Oncotarget [Internet]. 2018 Aug 3 [cited 2021 Jun 14];9(60):31753–70. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114981/

4. Ip W, Shao W, Song Z, Chen Z, Wheeler MB, Jin T. Liver-specific expression of dominant-negative transcription factor 7-like 2 causes progressive impairment in glucose homeostasis. Diabetes. 2015 Jun;64(6):1923–32.

5. Kim C-W, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, et al. Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metabolism [Internet]. 2017 Aug 1 [cited 2021 Jun 14];26(2):394-406.e6. Available from: https://www.sciencedirect.com/science/article/pii/S1550413117304308

6. Hepatic De Novo Lipogenesis Is Present in Liver-Specific ACC1-Deficient Mice [Internet]. Molecular and Cellular Biology. [cited 2021 Jun 14]. Available from: https://journals.asm.org/doi/abs/10.1128/MCB.01122-06

7. Lee B, Fast AM, Zhu J, Cheng J-X, Buhman KK. Intestine-specific expression of acyl CoA:diacylglycerol acyltransferase 1 reverses resistance to diet-induced hepatic steatosis and obesity in Dgat1–/– mice. J Lipid Res [Internet]. 2010 Jul [cited 2021 Jun 14];51(7):1770–80. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882751/

8. Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, et al. Hepatic Overexpression of Hormone-sensitive Lipase and Adipose Triglyceride Lipase Promotes Fatty Acid Oxidation, Stimulates Direct Release of Free Fatty Acids, and Ameliorates Steatosis. J Biol Chem [Internet]. 2008 May 9 [cited 2021 Jun 14];283(19):13087–99. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442319/

9. Ruiz-Villalba A, Mattiotti A, Gunst QD, Cano-Ballesteros S, van den Hoff MJB, Ruijter JM. Reference genes for gene expression studies in the mouse heart. Sci Rep [Internet]. 2017 Feb 2 [cited 2021 Jun 22];7(1):24. Available from: https://www.nature.com/articles/s41598-017-00043-9