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UK Biobank 

The UK Biobank participants 

Between 2006 and 2010, UK Biobank (UKB) recruited 503,317 participants aged 40-69 years, 

from 9.2 million adults who were invited to take part (5.5% response rate).(1; 2) All participants 

provided informed consent. Baseline data on self-reported sleep traits and other lifestyle and 

socio-demographic characteristics were obtained using a touchscreen questionnaire. At the same 

time, anthropometric measures and non-fasting venous blood samples were taken. These samples 

were used for glycated haemoglobin (HbA1c), non-fasting glucose, and chip-based genome-wide 

analyses; the latter providing single-nucleotide polymorphism (SNP) data. HbA1c (mmol/mol) 

was measured in red blood cells by HPLC on a Bio-Rad VARIANT II Turbo analyzer and non-

fasting glucose (mmol/l) was assayed in serum by hexokinase analysis on a Beckman Coulter 

AU5800.(3) 

UKB included 488,377 successfully genotyped participants: 49,979 using the UK BiLEVE chip 

and 438,398 using the UKB axiom chip. Pre-imputation quality control, phasing and imputation 

of the UKB genetic data have been described.(4) Of the 488,377 successfully genotyped 

participants, 488,288 were with available phenotypic data, among which, 409,629 were self-

reported as “White British”. Of these 409,629, 72,617 were excluded, after accounting for 

duplication, based on sex mismatch (n=312), sex chromosome aneuploidy (n=556), outliers in 

heterozygosity and missing rates (n=731), and relatedness based on estimated kinship 

coefficients (n=71,274).(5) Additionally, 13 participants who had withdrawn consent prior to our 
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analyses were removed (by 04 February 2020). Thus, 336,999 participants were included in the 

final analysis (Supplementary Figure 1).   

 

Details of self-reported sleep traits – exposures 

To assess the frequency of insomnia symptoms, participants were asked: “Do you have trouble 

falling asleep at night or do you wake up in the middle of the night?” with responses 

“Never/rarely”, “Sometimes”, “Usually”, “Prefer not to answer”, and “Do not know”. Those who 

responded “Prefer not to answer” or “Do not know” were set into missing. We derived a binary 

variable for the frequency of insomnia symptoms where “Usually” was coded as 1 and 

“Never/rarely” or “Sometimes” were coded as 0.  

24-hour sleep duration was assessed by asking: “How many hours sleep do you get in every 24 

hours? (Please include naps)”. The answer could only contain integer values. Binary variables 

for short sleep duration (≤6 hours vs 7-8 hours) and long sleep duration (≥9 hours vs 7-8 hours) 

were also derived.  

Self-reported daytime sleepiness was ascertained using the question “How likely are you to dose 

off or fall asleep during the daytime when you don’t mean to? (e.g., when working, reading or 

driving)” with the response options of “Never/rarely”, “Sometimes”, “Usually”, “All of the 

time”, “Prefer not to answer”, and “Do not know”. Participants reporting “Prefer not to answer” 

or “Do not know” were set into missing. Other responses were coded as 1 to 4 corresponding to 

the severity of daytime sleepiness.   
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To assess daytime napping, participants were asked: “Do you have a nap during the day?” with 

responses “Never/rarely”, “Sometimes”, “Usually”, “Prefer not to answer”, and “Do not know”. 

Those who responded “Prefer not to answer” or “Do not know” were set into missing. We 

derived a three-levels ordinal variable for napping frequency where “Never/rarely,” 

“Sometimes,” and “Usually” were coded as 1, 2, and 3, respectively. 

Chronotype was assessed in the question “Do you consider yourself to be?” with the following 

answers: “Definitely a ‘morning’ person”, “More a ‘morning’ than an ‘evening’ person”, “Do 

not know”, “More an ‘evening’ than a ‘morning’ person”, “Definitely an ‘evening person”, and 

“Prefer not to answer” which were coded from 1 to 5 and missing respectively.  

 

Multivariable-adjusted regression model 

We considered the following potential confounders in multivariable-adjusted regression (MVR) 

model: baseline age, sex, smoking, alcohol intake, Townsend residential area deprivation score, 

education vigorous physical activity levels, diagnosed sleep apnoea, and body mass index (BMI). 

The covariates were determined to be potential confounders based on being known or plausible 

cause of both variation in sleep characteristics and glycaemic levels.(6-18) Data on the 

confounders in the multivariable-adjusted regression (MVR) were taken from baseline 

questionnaire responses with the exceptions of sleep apnoea, BMI and deprivation scores. Of the 

lifestyle and environment questions, participants were asked their smoking status (categorised 

into ‘never’, ‘former’ or ‘current’) and their alcohol intake frequency (categorised into ‘never’, 

‘occasionally’, ‘1-3 times a month’ ‘once or twice a week’, ‘3-4 times a week’ or ‘daily’). 
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Participants were also asked how many days in a typical week that they would do 10 or more 

minutes of vigorous physical activity (“activities that make you sweat or breathe hard such as 

fast cycling, aerobic exercise and heavy lifting”). Participants were asked which qualifications 

they had. A categorial variable was generated for education in the UKB corresponding to 5 

International Standard Classification of Education (ISCED) codes based on the years of 

education in UK Biobank (5: College or university degree / NVQ or HND or HNC or equivalent; 

4: Other prof.equal. eg: nursing, teaching; 3: A levels / AS levels or equivalent; 2: O levels / 

GCSEs or equivalent / CSEs or equivalent; 1: None of the above). Townsend deprivation 

index(19) was calculated based on the preceding national census output areas, where each 

participant was assigned a continuous score corresponding to the output area in which their 

postcode was located. A higher index indicates a greater level of deprivation. At the initial 

Assessment Centre visit, height (cm) was measured using a Seca 202 device in all participants in 

the UKB along with sitting height while weight (kg) was measured by a variety of means, which 

was amalgamated into a single weight variable. Diagnosed sleep apnoea (ICD-10) was obtained 

from the Hospital Episode Statistics (HES) data (code G47.33) in the UKB. We ensured that the 

diagnosis occurred before the baseline UKB assessment using dates of diagnosis and UKB 

assessment. BMI was calculated from height and weight in kg/m2, which were measured at UKB 

assessment centres (fieldworker assessed weight and height at baseline. Standing height (cm) 

was measured using a Seca 202 device following a protocol and training. Weight (kg) was 

measured by a variety of means during the initial Assessment Centre visit. This field 

amalgamates these values into a single item).  
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One-sample Mendelian randomization 

Biallelic and autosomal SNPs identified in genome-wide association study (GWAS) of self-

reported sleep traits were used in the UKB:(2) 245 SNPs for insomnia symptoms,(20) 77 SNPs 

for sleep duration,(21) 27 SNPs for short sleep (≤ 6hours vs 7-8 hours),(21) 7 SNPs for long 

sleep (≥ 9hours vs 7-8 hours),(21) 37 SNPs for excessive daytime sleepiness,(22) 114 SNPs for 

napping,(23) and 341 SNPs for chronotype(24) (specific SNPs can be checked in 

Supplementary Table 7). After the identification of genetic variants from the discovery GWAS, 

we recoded the SNPs in the UKB to ensure they were aligning with the discovery GWAS, in the 

direction of specific sleep traits’ increasing allele. To be noticed, the chronotype increasing allele 

was coded for morning preference (categories were ordered from more ‘eveningness’ to more 

‘morningness’) in the discovery GWAS of chronotype.(24) We have flipped the evening 

preference alleles for chronotype for a better interpretation (where ‘definitely a morning person’ 

is the reference category). Accordingly, the unweighted allele scores of each sleep traits were 

generated by summing the number of effect alleles harboured by each individual.  

For one-sample Mendelian randomization (1SMR), the genetic variants were extracted from the 

UKB Haplotype Reference Consortium reference panel dataset. These data have undergone 

extensive quality control checks including removal of related participants (third degree or closer) 

and non-White British participants based on questionnaire and PCA.(25) Unweighted allele 

scores were generated as the total number of adverse sleep trait increasing alleles present for 

each participant (evening preference alleles for chronotype). Two-stage least squares (2SLS) 

instrumental variable analyses were performed with adjustment for assessment centre and 40 

genetic principal components to minimize confounding by population stratification,(26) as well 
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as baseline age, sex and genotyping chip to account for known confounders and to reduce 

random variation. 

 

Two-sample Mendelian randomization 

We conducted two-sample Mendelian randomization (2SMR) analyses of sleep traits with 

glycaemic measures using the summary associations between the genetic instruments and sleep 

traits identified in the respective GWAS(20-23) (sample 1) (Supplementary Table 1) and 

estimates of the associations between the genetic instruments and glycaemic measures (HbA1c 

and fasting glucose)(27; 28) from Meta-Analyses of Glucose and Insulin-related traits 

Consortium (MAGIC) (sample 2). Analyses were conducted using the “TwoSampleMR” 

package in R (version MRCIEU/TwoSampleMR@0.4.26).(29) If a SNP was unavailable in the 

outcome GWAS summary statistics, we identified a proxy in strong linkage disequilibrium (LD) 

with the missing SNP (r2>0.8) (proxy SNPs were shown in Supplementary Table 9). All SNPs 

used to instrument the sleep traits were found to be conditionally independent in the GWAS 

studies, as such we did not apply LD clumping function, which might reduce the number of 

SNPs. The effect allele frequency of the outcome summary data was misinterpreted in the 

“TwoSampleMR” package (by the time of the analyses was conducted). Therefore, we manually 

corrected the effect allele frequency of all the merged palindromic SNPs according to the data 

(i.e., minor allele frequency) downloaded from the MAGIC and the information of minor allele 

obtained from the Ensembl (EUR population) (https://www.ensembl.org/index.html). We then 

performed harmonization of the direction of effects between SNPs in the exposure and outcome 

GWAS. Palindromic SNPs were harmonized if they were aligned and the minor allele frequency 

https://www.ensembl.org/index.html
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was <0.3, otherwise they were excluded. In the primary analysis, we used the inverse-variance 

weighted (IVW) regression under a multiplicative random-effects model(30) (weights are equal 

to the inverse of variance of SNP-outcome associations) to obtain causal effects of sleep traits on 

HbA1c and fasting glucose.  

To enable the comparison of the 2SMR estimates to the MVR and 1SMR results, we converted 

the results of the SNP-binary sleep traits (i.e., insomnia symptoms, short sleep, and long sleep) 

from the multiplicative log odds scale to a difference in risk scale by 𝛽𝛽 = log𝑂𝑂𝑂𝑂 ∗  𝜇𝜇 ∗ (1 − 𝜇𝜇),

𝑠𝑠𝑠𝑠 =  𝑠𝑠𝑠𝑠log𝑂𝑂𝑂𝑂 ∗  𝜇𝜇 ∗ (1 − 𝜇𝜇), with 𝜇𝜇 =  𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)⁄ .(31) 

 

Sensitivity analyses  

Collider-correction  

The method of Barry et al, termed `collider-correction’, enables weak instrument and pleiotropy 

robust 2SMR methods to be applied to one-sample data to obtain causal estimates.(32) It is based 

on a generalization of the algorithm described in Dudridge et al , to adjust for collider bias in 

genetic association studies of disease progression.(33) This method artificially induces and then 

corrects for collider bias, with an additional simulation extrapolation (SiMEX) correction(34) 

step to cope with weak instrument bias. Further methodological details are provided in the link 

publication (https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009703), but 

we provide a brief description below. 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009703
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The association among SNP (G), exposure (X), and outcome (Y) for subject i is assumed to obey 

the following data generating process:  

𝑋𝑋𝑖𝑖 | 𝐺𝐺𝑖𝑖 ,𝑈𝑈𝑖𝑖 =  ∑ 𝛽𝛽𝑋𝑋𝑋𝑋𝑋𝑋  𝐺𝐺𝑖𝑖𝑋𝑋𝑘𝑘
𝑋𝑋=1 + 𝛽𝛽𝑈𝑈𝑋𝑋 𝑈𝑈𝑖𝑖 +  𝜀𝜀𝑋𝑋𝑖𝑖           (1) 

𝑌𝑌𝑖𝑖 |𝑋𝑋𝑖𝑖 ,  𝐺𝐺𝑖𝑖 ,𝑈𝑈𝑖𝑖 =  𝛽𝛽 𝑋𝑋𝑖𝑖 + ∑ 𝛼𝛼𝑋𝑋  𝐺𝐺𝑖𝑖𝑋𝑋𝑘𝑘
𝑋𝑋=1 + 𝛽𝛽𝑈𝑈𝑈𝑈 𝑈𝑈𝑖𝑖 +  𝜀𝜀𝑈𝑈𝑖𝑖         (2) 

where U is the unmeasured confounding predicting X and Y, ε is the independent residual error 

term. 

In order to obtain the unbiased causal effect 𝛽𝛽 using 2SLS which assuming there is no pleiotropy 

(𝛼𝛼𝑋𝑋 = 0), we would firstly regress the exposure (X) on all  𝑘𝑘 genetic variant under model (1) to 

derive the predicted exposure 𝑋𝑋𝚤𝚤�  = ∑ 𝛽𝛽𝑋𝑋𝑋𝑋𝑋𝑋  𝐺𝐺𝑖𝑖𝑋𝑋𝑘𝑘
𝑋𝑋=1 . Subsequently, we would regress the outcome 

(Y) on 𝑋𝑋𝚤𝚤�  to obtain the causal estimate �̂�𝛽. However, in a one-sample setting, the unmeasured 

confounder U is common to both X and Y, therefore the respectively residual error 𝜀𝜀𝑋𝑋𝑖𝑖 and  𝜀𝜀𝑈𝑈𝑖𝑖 

are correlated, which might bias the estimate toward the observational estimate as long as the 

instruments are weak (F-statistics <10).(35; 36)         

Artificially, we introduce collider bias into the SNP-outcome associations by fitting model (3):  

𝑌𝑌𝑖𝑖 | 𝑋𝑋𝑖𝑖 ,𝐺𝐺𝑖𝑖 =  𝛽𝛽∗ 𝑋𝑋𝑖𝑖 +  ∑ 𝛼𝛼𝑋𝑋∗ 𝐺𝐺𝑖𝑖𝑋𝑋𝑘𝑘
𝑋𝑋=1 +  𝜀𝜀𝑖𝑖′            (3) 

where 𝛽𝛽∗ and 𝛼𝛼𝑋𝑋∗ are collider biased estimates distinct from 𝛽𝛽 and 𝛼𝛼𝑋𝑋, when confounding exists 

between the exposure and outcome exists. The parameters 𝛼𝛼𝑋𝑋∗, 𝛼𝛼𝑋𝑋, 𝛽𝛽∗, and 𝛽𝛽 are linked via:  
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𝛼𝛼𝑋𝑋∗ =  𝛼𝛼𝑋𝑋 + (𝛽𝛽 - 𝛽𝛽∗) 𝛽𝛽𝑋𝑋𝑋𝑋𝑋𝑋          (4) 

To estimate 𝛽𝛽 we therefore fit a linear model to obtain an estimate (𝛽𝛽 − 𝛽𝛽∗)� : 

𝛼𝛼𝚥𝚥∗� =  𝛼𝛼0 + (𝛽𝛽 - 𝛽𝛽∗) 𝛽𝛽𝑋𝑋𝑋𝑋𝚥𝚥 �+  𝜀𝜀𝑖𝑖         (5) 

As such, the causal effect  is then estimated as 

𝛽𝛽 �  =  𝛽𝛽∗ � + (𝛽𝛽 − 𝛽𝛽∗)�      (6) 

To additionally adjust for weak instrument bias we fit linear model (5) using SiMEX(34) or 

another classical measurement error correction method. This method can be used because the 

collider correction algorithm removes the correlation in the uncertainties of 𝛽𝛽𝑋𝑋𝑋𝑋𝚥𝚥 �  and the 𝛼𝛼𝚥𝚥∗�  . 

In this study, the summary statistics for collider-correction (i.e., 𝛽𝛽𝑋𝑋𝑋𝑋, se𝛽𝛽𝑋𝑋𝑋𝑋, 𝛽𝛽𝑈𝑈𝑋𝑋, se𝛽𝛽𝑈𝑈𝑋𝑋, 𝛽𝛽∗, 

se𝛽𝛽∗, 𝛼𝛼∗, 𝑠𝑠𝑠𝑠𝛼𝛼∗) were obtained from the linear regression adjusted for age, sex, chip, assessment 

centre, and 40 principal components. This collider correction can be implemented to different 

2SMR methods regarding different assumptions of pleiotropy. The following methods were 

named 1SMRsensitivity1, 1SMRsensitivity2, and 1SMRsensitivity3 respectively in the 

manuscript, tables, and figures.  

When implementing into IVW, we assume the mean pleiotropy is zero and the Instrument 

Strength Independent of Direct Effect (InSIDE) assumption. Thus, in regression (5) we can set 

𝛼𝛼0 = 0 and fit using least squares. (1SMRsensitivity1) 
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To account for potential pleiotropy with a non-zero mean we repeat the above procedure but 

allow the intercept to be estimated in (5), This is equal to performing MR-Egger regression.(37) 

(1SMRsensitivity2) 

To account for ‘majority valid’ pleiotropy that is nevertheless potentially in violation of the 

InSIDE assumption, we fit model (5) with no intercept using least-absolute deviation (LAD) 

regression, This is close in spirit to the weighted median (WM) approach.(38) 

(1SMRsensitivity3) 

Applying the combination of collider correction and 2SMR methods as a sensitivity analysis, it 

provides an alternative to account for both pleiotropy and weak instrument bias in a 1SMR 

setting, which is a less biased but more precise causal estimate comparing with the application of 

standard 2SMR methods. 

 

Winner’s curse correction  

To address this, we identified subsets of genome-wide significance SNPs (p-value<5×10-8) of 

some sleep traits in other independent GWAS that did not include UKB. For insomnia 

symptoms: a subset of 108 SNPs were identified in Jansen et al GWAS,(20) when analyses were 

run in the 23andMe separately; for excessive daytime sleepiness: a subset of 19 SNPs were 

identified in Wang H et al GWAS,(22) when analyses were ran in 337,539 unrelated individuals 

of European Ancestries separately; for napping: a subset of 17 SNPs were identified in Dashti 

HS et al GWAS,(23) when analyses were ran in the 23andMe separately; for chronotype: a 
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subset of 72 SNPs were identified in Jones et al GWAS,(24) when analyses were ran in the 

23andMe separately. These SNPs could be accessed in the supplementary of the specific 

discovery GWAS studies.(20; 22-24) 

We did not identify a study (other than UKB) that had undertaken genome-wide analyses of 

sleep duration. Replication of the 78 genome-wide significant SNPs predicting sleep duration in 

the UKB were conducted in the CHARGE (adult, n=47,180) and the EAGLE 

(childhood/adolescent, n=10,554) cohorts respectively, as well as, meta-analysis of these two 

cohorts with the UKB (n =446,118) were presented in the discovery GWAS.(21) Despite, the 

summary statistics were driven by the UKB considering to the larger sample size of UKB. 

Besides, no summary statistics of meta-analysis of these two independent cohorts were given in 

the discovery GWAS.(21) Although we have conducted a meta-analysis to obtain the summary 

statistics from the CHARGE and the EAGLE, no genome-wide significance SNP was identified. 

As such, no winner’s curse robust sensitivity analysis was conducted. 

 

Additional analyses 

Assessing associations of HbA1c with insomnia 

1SMR and 2SMR were conducted to assess the association of HbA1c with insomnia to rule out 

the possibility of reverse causality that HbA1c levels could influence sleep perhaps through 

mechanisms including neuropathic pain and nocturia.  
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For 1SMR, 11 genome-wide significance (p-value<5×10-8) SNPs predicting HbA1c were 

identified in Soranzo N et al GWAS (n=46,368, aged 53 years-old (52% female), from 23 

GWAS)(27) from MAGIC. We generated the unweighted allele score as the total number of 

HbA1c increasing alleles present for each participant in the UKB. 2SLS instrumental variable 

analyses were performed with adjustment for assessment centre and 40 genetic principal 

components to minimize confounding by population stratification, as well as baseline age, sex, 

and genotyping chip to account for known confounders and to reduce random variation.  

2SMR analyses of HbA1c with insomnia symptoms were conducted using the summary 

associations between the genetic instruments and HbA1c identified in the in Soranzo N et al’ s 

GWAS(27) (exposure, sample 1) and estimates the associations between the genetic instruments 

and insomnia symptoms(20) (downloaded from https://ctg.cncr.nl/software/summary_statistics) 

(outcome, sample 2). Analyses were conducted using the “TwoSampleMR” package in R.(29) 

All the 11 (non-palindromic) SNPs identified in the exposure GWAS can be merged in the 

outcome summary statistics. IVW regression under a multiplicative random-effects model(30) 

was used as the primary 2SMR analysis, meanwhile, WM and MR-Egger were also applied as 

sensitivity analyses.  

      

Multivariable Mendelian randomization assessing the direct effect of insomnia symptoms on 

HbA1c independent of BMI 

97 genome-wide significance SNPs predicting BMI were extracted from Locke et al GWAS.(39) 

Among which, 96 SNPs were identified and were used to generate the unweighted allele scores 
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as the total number of BMI increasing alleles present for each participant in the UKB. We 

conducted a multivariable Mendelian randomization(40) (MVMR) to assess the direct effect of 

insomnia symptoms on HbA1c independent of BMI in the UKB. The Sanderson-Windmeijer F 

statistics(40) of insomnia symptoms unweighted allele score and BMI unweighted allele score 

were 1,596 and 3,970 respectively. For comparison, unique variable Mendelian randomization 

(UVMR) for the effect of BMI on HbA1c was also conducted separately in the UKB. Both 

MVMR and UVMR were performed with adjustment for age at recruitment, sex, assessment 

centre, 40 genetic principal components, and genotyping chip.  

 

Assessing associations of sleep traits with glucose 

Glucose was measured in the same unit of mmol/l in UKB (non-fasting glucose, n = 293,838) 

and in MAGIC (fasting glucose, n = 46,186, mean (SD) age = 52 years (56% female) from 21 

GWAS).(28) In the UKB, non-fasting glucose was right skewed, therefore, we natural log-

transformed it and converted it into SD units (1 SD = 0.17 log mmol/l). In 2SMR, we also 

presented results in SD units of the summary data from MAGIC (1SD was equal to an fasting 

glucose value of 0.73 mmol/l). Thus, for all analyses (MVR, 1SMR, and 2SMR) we estimated 

the mean difference in glucose SD per 1 unit or category increase in the sleep traits (i.e., 24-hour 

sleep duration, daytime sleepiness, daytime napping, and chronotype) except for insomnia 

symptoms, short sleep (≤6 hours vs 7-8 hours), and long sleep (≥9 hours vs 7-8 hours). For these 

binary exposures, in MVR and 1SMR we estimated the average difference in glucose under the 

counterfactual assumption which provides an estimate of the difference between everyone (in the 

population of interest) experiencing the exposure (i.e. assuming exposure prevalence is 100%) 
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compared to no-one experiencing the exposure (assuming exposure prevalence: 0%).(41) To 

enable the comparison of the 2SMR estimates to the MVR and 1SMR results, we converted the 

results of the SNP-binary sleep trait from the multiplicative log odds scale to a difference in risk 

scale by 𝛽𝛽 = log𝑂𝑂𝑂𝑂 ∗  𝜇𝜇 ∗ (1 − 𝜇𝜇), 𝑠𝑠𝑠𝑠 =  𝑠𝑠𝑠𝑠log𝑂𝑂𝑂𝑂 ∗  𝜇𝜇 ∗ (1 − 𝜇𝜇), with 𝜇𝜇 =

 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)⁄ .(31)  

In UKB, glucose was measured without fasting, because participants were not advised to fast 

before attending. However, participants were asked to record the last time they ate or drank 

anything before attending the clinic and those answers were used as ‘fasting time’. As such, we 

repeated MV and 1SMR main analyses with additional adjustment for fasting time (hours) and 

dilution factor. During routine quality control checks, the UKB laboratory team observed that 

some assay results were lower than expected for samples acquired during certain time periods. 

This affected biochemical results for ~ 8% of the samples and a dilution correction factor has 

been provided for the relevant measures.(42; 43) As such, the dilution factor was adjusted for. 

While the assessment of sleep traits on glucose levels was secondary to our primary aim, it 

should be highlighted that both MVR and 1SMR were conducted on non-fasting glucose in 

UKB. Analyses were adjusted for fasting time, but even with this adjustment differences 

between the 1SMR and 2SMR may be because the latter was based on fasting glucose.  

 

Testing Mendelian randomization assumptions 

In 1SMR, the variation in sleep traits explained by the allele scores varied from 2.14% (F-

statistic 7359) for chronotype to 0.07% (F-statistic 181) for long sleep duration (Supplementary 
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Table 1). For collider-correction, the mean F-statistics of individual SNPs (mean (Fi = 

BetaXGi^2 / seBetaXGi^2) (BetaXGi and seBetaXGi were obtained from UKB)) for each of the 

sleep traits calculated in UKB were ≥ 23, except for insomnia symptoms for which it was 8 

(Supplementary Table 7). In 2SMR, the variance explained by the combined SNPs was also 

highest for chronotype (2.09%, mean F-statistic 60) and lowest for long sleep duration (0.06%, 

mean F-statistic 41) (Supplementary Table 1). Details of any proxy SNPs used in the 2SMR are 

described in Supplementary Table 9. 

After accounting for multiple testing (p<0.05/7 = 0.007, 7 risk factors), the allele score for 

insomnia symptoms was associated with six potential risk factors for variation in glycaemic traits 

that might result in directional pleiotropy (smoking, alcohol, Townsend residential deprivation 

index, BMI, education, physical activity except sleep apnoea). To differing degrees, the allele 

scores of short sleep duration, daytime sleepiness, daytime napping, and chronotype also 

associated with one or more of these risk factors, whereas allele scores of total sleep duration and 

long sleep duration were not substantively associated with these risk factors (Supplementary 

Table 8).  

In 1SMR, the Sargan test indicated heterogeneity (p < 0.05) of the SNP estimates for all sleep 

traits with HbA1c and glucose, which could suggest horizontal pleiotropy. However, MR-Egger 

intercepts did not provide evidence of any meaningful bias due to directional pleiotropy 

(Supplementary Table 3 and Supplementary Table 5). 
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Quantifying the population-level impact of a hypothetical insomnia intervention on the 

prevalence of diabetes in the UK 

Here we describe our methods for obtaining a population-level estimate of the effect of a 

hypothetical insomnia intervention on the UK prevalence of type 2 diabetes. We base the size of 

the treatment effect on the 1SMR causal estimate in UKB participants. This causal estimate 

indicates if we were able to successfully intervene in all of those who "usually" experience 

insomnia so that the frequency of their symptoms becomes "sometimes" or "rarely/never" then 

this intervention would be predicted to lead to a 0.52 SD, (0.42 to 0.63) reduction in their HbA1c 

levels, which is equivalent to 1.08 (1.07 to 1.10) mmol/mol (1SD = 0.15 log mmol/mol in the 

UKB). We defined diabetic status as the level of HbA1c ≥ 48 mmol/mol. As such:  

The proportion of diabetes in the UKB (before insomnia treatment, regardless of insomnia 

status): 

𝑝𝑝0 =  𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻1𝑐𝑐 ≥48 / 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (before insomnia treatment) 

Among 28% participants in the UKB with “usually” insomnia frequency, we lower their HbA1c 

level by 1.08 mmol/mol. Then we re-calculated the proportion of people who have diabetes in 

the UKB: 

𝑝𝑝1 =  𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻1𝑐𝑐 ≥48 / 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (after insomnia treatment) 

As such, the difference between 𝑝𝑝0 and 𝑝𝑝1 is the reduction in the proportion of people with 

diabetes as a consequence of insomnia treatment. We then used a parametric bootstrap (1,000 
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times) to obtain the corresponding 95% confidence interval, which is 0.109%, (0.107 to 0.110) 

reduction.  

Lastly, we applied this proportional effect to the expected number of people in the UK between 

the ages of 40 and 70 years in 2018,(44) which was the age range at baseline in UKB participants 

when insomnia symptoms were assessed. Approximately 38% of the UK population (i.e., 25 

million out of 66 million in total) are in this age range.(44) Therefore, ~27,300 (95%CI 26,800 to 

27,500) people with frequent insomnia symptoms would be free from having diabetes (HbA1c ≥ 

48 mmol/mol) in the UK, if an effective intervention was delivered to the 25 million adults 

between 40 and 70 years of age.(44) This estimate is based on the 28% of the population 

“usually” experiencing insomnia symptoms in the UKB cohort, which is similar to the recorded 

national surveys of adult population in the UK that range from 5% to 38%.(45)These values 

could be uncertain. On one hand, the percentage of insomnia symptoms in the UKB cohort might 

be higher than that in the general population given UKB participants are older (mean age ~56). 

Thus, the estimate may be exaggerated in terms of what we would expect of a population 

including all ages. However, the UKB cohort is healthier than the age equivalent UK 

population,(46) which could underestimate risk. The quantification of the impact of a 

hypothetical insomnia intervention could also be an overestimate as current (largely behavioural) 

interventions would be challenging to implement in all people who usually experience insomnia 

symptoms and the intervention is unlikely to be effective in all participants.(47; 48)  
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