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Supplementary Materials 

Outcome definitions 

To ensure consistency with the original CANVAS program trials (1), we complied with the 

outcome definitions described in the trial protocols. We defined cardiovascular mortality as a 

death event attributed to any cardiac or vascular disorder, including central nervous system 

vascular disorders, pulmonary embolism and pulmonary edema. Deaths of unknown cause were 

also included in this group, as per the original CANVAS trials protocols. Any death not 

classified as cardiovascular was defined as non-cardiovascular.  

 

Medication definitions 

Medications used at baseline were extracted from the baseline, run-in visit records based on the 

ATC (Anatomical Therapeutic Chemical Classification System) Index 2021, a system of 

alphanumeric codes developed by the World Health Organization (WHO) for the classification 

of drugs and other medical products. The codes used for the definition of each medication group 

are summarized below: 

Diuretics: ‘C03’, 'C01AA', 'C02L', 'C07B', 'C07C', 'C07D', 'C08G', 'C09BA', 'C09DA' 

Beta blockers: ‘C07’, 'C09BX', 'C09DX' 

RAAS inhibitors: 'C09', 'C10BX' 

Calcium channel blockers: 'C08', 'C04AE', 'C08G', 'C09BB', 'C07FB', 'C10BX' 

Statins: 'C10AA', 'C10BA02', 'C10BA03', 'C10BA04', 'C10BA05', 'C10BA06', 'C10BA07', 

'C10BA08', 'C10BA09', 'C10BX' 

Antiplatelets: 'B01AC' 

Anticoagulants: 'B01AA', 'B01AB', 'B01AE', 'B01AF', 'B01AX' 
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Insulin: 'A10A' 

Insulin (short-acting): 'A10AB', 'A10AF' 

Insulin (intermediate- or long-acting): 'A10AC', 'A10AE', 'A10AD' 

Biguanides: 'A10BA', 'A10BD01', 'A10BD02', 'A10BD03', 'A10BD05', 'A10BD07', 'A10BD08', 

'A10BD10', 'A10BD11', 'A10BD13', 'A10BD14', 'A10BD15', 'A10BD16', 'A10BD17', 

'A10BD18', 'A10BD20', 'A10BD22', 'A10BD23', 'A10BD25', 'A10BD26' 

Sulfonylureas: 'A10BB', 'A10BD01', 'A10BD02', 'A10BD04', 'A10BD06' 

Thiazolidinediones: 'A10BG', 'A10BD04', 'A10BD05', 'A10BD06', 'A10BD09', 'A10BD12’, 

'A10BD26' 

Dipeptidyl-peptidase IV inhibitors: 'A10BH', 'A10BD07', 'A10BD08', 'A10BD09', 'A10BD10', 

'A10BD11', 'A10BD12', 'A10BD13', 'A10BD18', 'A10BD19', 'A10BD21', 'A10BD22', 

'A10BD24', 'A10BD25' 

Glucagon-like peptide 1 agonists: 'A10BJ' 

Other antihyperglycemic medications: 'A10BX' 

 

Missing data imputation 

We imputed missing variables using chained random forests with predictive mean matching 

deployed within the missRanger package in R. This approach enables imputation of mixed-type 

datasets while avoiding imputed values not already present in the original data, while also raising 

the variance in the resulting conditional distributions to a realistic level.  

 

Dissimilarity distance calculation using Gower’s method 
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As per our previous work (2), we first computed a dissimilarity index that classified individuals 

based on their detailed clinical characteristics according to the Gower distance. For numeric 

variables, Gower’s distance calculates the absolute value of the difference divided by the range. 

For non-numeric elements (categorical variables) the method assigns “1” if the values are 

identical and “0” if they are not. Gower’s distance is ultimately calculated as the average of these 

terms (3). 

 

Visualization using uniform manifold approximation and projection 

To visualize phenotypic variation in the CANVAS population and neighborhoods, we used a 

dimensionality reduction method with uniform manifold approximation and projection (UMAP) 

(4). UMAP constructs a high-dimensional graph and then optimizes a low-dimensional graph to 

be as structurally similar as possible. UMAP aims to maintain a balance between the local and 

global structure of the data by decreasing the likelihood of connection as the outwards radius 

around each datapoint increases, thus maintaining the local architecture while ensuring that each 

point is connected to at least its closest neighbor and ensuring a global representation (4). Two 

visualization parameters – the number of neighbors and the minimum distance – were set at 200 

and 0.6, respectively, both chosen to optimize how well the UMAP learned the manifold 

structure of the data and preserved the broad topological structure of our dataset while 

maintaining the visualization. These values only affect the visualization but not the structure of 

the topological space. 

 

Training of the extreme gradient boosting algorithm 
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Data preprocessing: For the training of the extreme gradient boosting algorithm, categorical 

variables with more than two groups were one-hot encoded (0: no, 1: yes) and we removed 

groups with near-zero variance (frequency cut-off for ratio of most common value to the second 

most common value of 95 to 5).  

 

Machine learning task creation: An extreme gradient boosting algorithm was trained using the 

CANVAS data using a tree or linear gradient booster. In the tree gradient booster, a tree is grown 

one after another and attempts to reduce the error rate in subsequent iterations. At each level the 

next tree is built by giving a higher weight to points with the highest residuals (actual-predicted). 

We set our problem as a regression task, using root mean squared error as our metric to evaluate 

our model’s accuracy in the validation data.  

 

Hyperparameter tuning: We performed a total of 100 iterations with hyperparameter tuning 

validated using five-fold cross-validation. For the hyperparameter tuning, a grid was created 

using the following parameters: “gradient booster”: tree or linear; “maximal depth of the tree”: 3 

to 10; “minimum number of instances required in a child node”: 1 to 10; “number of samples 

supplied to a tree”: 0.5 to 1; “number of features supplied to a tree”: 0.5 to 1; “ regularization 

parameter gamma” (penalizes large coefficients at higher values to prevent overfitting): 0 to 100; 

“L2 regularization parameter alpha” (equivalent to ridge regression): 0 to 1; and the “L1 

regularization parameter lambda” (equivalent to lasso regression with shrinkage and feature 

selection): 0 to 1. Following a total of 100 iterations, the optimal parameters were identified as a 

tree gradient booster with “maximal depth of the tree”: 10; “minimum number of instances 

required in a child node”: 1.65; “number of samples supplied to a tree”: 0.569; “number of 
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features supplied to a tree”: 0.552; “gamma”: 3.46; “alpha”: 0.139; and “lambda”: 0.334. Using 

the selected hyperparameters, we subsequently trained our model for a maximum of 500 

iterations, with an early stopping function triggered if the performance in the validation set did 

not improve after 20 rounds (in our case this was reached after 194 iterations).  

 

Feature importance evaluation and selection: We evaluated the importance of our features in 

the final model using the model-agnostic SHAP (Shapley Additive exPlanations) values, based 

on the theoretical concept of Shapley values as described in cooperative game theory. SHAP 

values shed light into the “black-box” nature of machine learning algorithms by interpreting the 

contribution of each input variable to the final prediction. SHAP values measure the impact of 

each variable considering the interaction with other variables. We visualized these using a SHAP 

summary plot, in which the vertical axis represents the variables in descending order of 

importance and the horizontal axis indicates the change in prediction (with wider bars along the 

horizontal axis associated with higher feature importance). The gradient color denotes the 

original value for that variable (for instance, for binary variables such as hypertension or 

diabetes, it only takes two colors, whereas for continuous variables, it contains the whole 

spectrum). In these plots. each point represents an individual from the original training set. To 

create an easy-to-use clinical model, we selected the top 15 features (feature importance of 0.01 

or higher) and retrained our model, using five-fold cross-validation in CANVAS dataset, 

following the same methodology as the one reviewed above. The final algorithm was named 

INSIGHT (INdividualized cardiovaScular rIsk reduction with sGlt2 inHibiTors).
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Supplemental tables 

Table S1. Variables included in the pre-processing, training and validation stages. 

Variable name 
Available in >80% 

of CANVAS 

Included in 

model training 

Included in 

final model 

Age ✓ ✓  

Sex ✓ ✓ ✓ 

Race ✓ ✓ ✓ 

Ethnicity ✓ ✓ ✓ 

Dyslipidemia ✓ ✓ ✓ 

Hypertension ✓ ✓ ✓ 

Retinopathy ✓ ✓ ✓ 

Nephropathy ✓   

Neuropathy ✓ ✓ ✓ 

Coronary artery disease ✓ ✓ ✓ 

Cerebrovascular disease ✓   

Peripheral arterial disease ✓   

Heart failure ✓ ✓ ✓ 

History of amputation ✓   

History of coronary revascularization ✓   

Diuretic use ✓   

Beta blocker use ✓   

Renin-angiotensin-aldosterone blocker use ✓   

Calcium channel blocker use ✓   

Antiplatelet use ✓   

Anticoagulant use ✓   

Statin use ✓   

Insulin use (any) ✓   

Insulin use (intermediate-long) ✓   

Insulin use (short-acting) ✓   

Biguanide use ✓   

Thiazolidinedione use ✓   

Dipeptidyl-peptidase IV inhibitor use ✓   

Glucagon-like peptide 1 receptor agonist use ✓   

Other antihyperglycemic agent use ✓   

Smoking history ✓ ✓ ✓ 

Weight ✓   

Pulse ✓ ✓  

Systolic blood pressure ✓ ✓  

Diastolic blood pressure ✓ ✓  

Height ✓   

Body mass index ✓ ✓ ✓ 

Albumin, serum ✓ ✓  

Albumin, urine ✓   

Albumin/creatinine ratio, urine ✓ ✓  

Alkaline phosphatase, serum ✓ ✓  

Alanine aminotransferase, serum ✓   
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Aspartate aminotransferase, serum ✓ ✓  

Basophil count, blood ✓   

Basophil percentage, blood ✓   

Bicarbonate, serum ✓ ✓  

Bilirubin total, serum ✓ ✓  

Bilirubin, urine    

Blood, urine    

Blood urea nitrogen, urine ✓ ✓  

Calcium, serum ✓ ✓  

Total cholesterol, serum ✓   

Creatine kinase, serum ✓ ✓ ✓ 

Chloride, serum ✓ ✓  

C-peptide, serum    

Creatinine, serum ✓   

Creatinine, urine ✓   

Eosinophil count, blood ✓ ✓  

Eosinophil percentage, blood ✓   

Glomerular filtration rate ✓ ✓ ✓ 

Gamma-glutamyl transferase, serum ✓ ✓  

Glucose, serum ✓   

Glycated hemoglobin A1c ✓ ✓  

High-density lipoprotein cholesterol level, serum ✓ ✓  ✓ 

Insulin, serum    

Potassium, serum ✓   

Ketones, urine    

Lactate dehydrogenase, serum ✓ ✓  

Low-density lipoprotein, serum ✓   

LDL-C to HDL-C ratio, serum ✓ ✓  

Leukocyte esterase, urine    

Lymphocyte count, blood ✓ ✓  

Lymphocyte percentage, blood ✓   

Magnesium, serum ✓ ✓  

Monocyte count, blood ✓ ✓  

Monocyte percentage, blood ✓   

Neutrophil count, blood ✓   

Neutrophil percentage, blood ✓   

Neutrophil-to-lymphocyte ratio, blood ✓ ✓  

Nitrite, urine    

pH, urine ✓   

Phosphate, serum ✓ ✓  

Platelet count, blood ✓ ✓  

Proinsulin (pmol, mIU)    

Proinsulin (pmol, L)    

Protein total, serum ✓ ✓  

Protein, urine    

Total right blood cell count, blood ✓   

Right blood cell morphology, blood  ✓  

Sodium, serum ✓ ✓  
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Specific gravity, urine ✓   

Triglyceride, serum ✓ ✓  

Uric acid, serum ✓ ✓  

Urobilinogen, urine    

Polychromasia, blood    

Total white blood cell count, blood ✓  ✓  

Atypical lymphocytes, blood    

Atypical lymphocytes percentage, blood    

Follicle-stimulating hormone, serum    

hCG, urine    

Thyroid-stimulating hormone, serum    

Anisocytosis, blood    

Elliptocytes, blood    

HpoRBC, blood    

Microcytosis, blood    

Rouleaux, blood    

Macrocytosis, blood    

Basophilic stippling, blood    

Neutrophil band count, blood    

Neutrophil band form to leukocyte ratio, blood    

Myelocyte count, blood    

Myelocyte count, percentage    

Bacteria, urine    

Bilirubin indirect, serum    

Epithelial cells, urine    

Poikilocytosis, blood    

QTc (Friderichia) ✓   

Heart rate  ✓   

QT ✓   

QRS ✓   

PR ✓   

RR ✓   

QTc (Bazett’s) ✓   
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Table S2. Baseline characteristics of the CANVAS and CANVAS-R populations. 
 CANVAS (n=4327) CANVAS-R (n=5808) 

 Canagliflozin Placebo Canagliflozin Placebo 

Total number 2886 1441 2904 2904 

Age (years) 61.0±8.2 60.8±8.0 62.3±8.5 62.4±8.4 

Male (sex) 1905 (66.0) 955 (66.3) 1851 (63.7) 1793 (61.7) 

Hispanic/Latino ethnicity 266 (9.2) 149 (10.3) 604 (20.8) 586 (20.2) 

Race     

Native American 2 (0.1) 3 (0.2) 14 (0.5) 19 (0.7) 

Asian 533 (18.5) 262 (18.2) 244 (8.4) 245 (8.4) 

Black 70 (2.4) 35 (2.4) 105 (3.6) 125 (4.3) 

Native Hawiian or Pacific Islander 5 (0.2) 1 (0.1) 8 (0.3) 9 (0.3) 

Other 4139 (4.8) 66 (4.6) 132 (4.5) 135 (4.3) 

White 2114 (73.3) 1063 (73.8) 2391 (82.3) 2371 (81.6) 

Dyslipidemia 1980 (68.6) 969 (67.2) 2061 (71.0) 2100 (72.3) 

Hypertension 2520 (87.3) 1271 (88.2) 2657 (91.5) 2660 (91.6) 

Retinopathy 630 (21.8) 303 (21.0) 683 (23.5) 709 (24.4) 

Nephropathy 449 (15.6) 228 (15.8) 575 (19.8) 576 (19.8) 

Coronary artery disease 1462 (50.7) 728 (505.) 1355 (46.7) 1361 (46.9) 

Medications     

Diuretic use 1275 (44.2) 721 (50.0) Not provided Not provided 

Beta blocker use 1712 (59.3) 878 (60.9) Not provided Not provided 

RAASi 2492 (86.3) 1269 (88.1) Not provided Not provided 

Calcium channel blocker use 1180 (40.9) 643 (44.6) Not provided Not provided 

Antiplatelet use 2157 (74.7) 1089 (75.6) Not provided Not provided 

Statin use 2282 (79.1) 1126 (78.1) Not provided Not provided 

Insulin use 2067 (71.6) 1103 (76.5) Not provided Not provided 

Glycated hemoglobin  8.2±0.9 8.2±0.9 8.3±0.9  8.3±1.0 

Summary statistics are presented as numbers (percentages, %) or mean ± standard deviation. 
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Table S3. Risk of serious adverse events with canagliflozin therapy among different groups 

of predicted atherosclerotic benefit using INSIGHT.   

 
 Predicted high 

responders* 
Predicted low 
responders*  

P value for 
interaction 

Total numbers, or Hazard Ratio (95% CI)  

CANVAS trial 

Total numbers N=1224 N=3103 - 

Risk of serious adverse event for canagliflozin versus placebo 0.91 (0.77-1.07) 1.00 (0.89-1.11) 0.36 

Risk of any serious adverse event resulting in discontinuation of 
therapy for canagliflozin versus placebo 

0.89 (0.69-1.15) 1.17 (0.97-1.41) 0.09 

CANVAS-Renal trial 

Total numbers N=1702 N=4106 - 

Risk of serious adverse event for canagliflozin versus placebo 0.81 (0.68-0.98) 0.90 (0.80-1.02) 0.33 

Risk of any serious adverse event resulting in discontinuation of 
therapy for canagliflozin versus placebo 

0.64 (0.47-0.88) 0.88 (0.73-1.07) 0.09 

Hazard ratios are derived from Cox regression models with time to first serious adverse event (or serious adverse event requiring 
discontinuation of therapy) as the dependent outcome of interest and treatment arm as the independent variable further adjusted for age at 
randomization and sex. *High responders were defined as those individuals with a predicted benefit greater than half a standard deviation 
lower than the average predicted response (log HR) as defined in the methods.   
CANVAS: Canagliflozin Cardiovascular Assessment Study; CI: confidence interval; INSIGHT: INdividualized cardiovaScular rIsk reduction with 
sGlt2 inHibiTors. 
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Supplemental Figure S1. Neighborhood analyses to uncover treatment effect heterogeneity. 

Using the manifold representation of all 4327 participants included in CANVAS, we defined 

4327 neighborhoods of variable size (one around each study participant) and in each one, 

Supplemental Figure S1

Uncovering treatment effect heterogeneity in CANVAS with neighborhood analysis
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calculated age- and sex-adjusted risk estimates of major adverse cardiac events (MACE) with 

canagliflozin therapy versus placebo. Moving from larger neighborhoods (e.g. 50%, 25%, 20%, 

15% of all participants (A-D)) to smaller neighborhoods (e.g. 10, 7.5%, 5%, 3% of all 

participants (E-H)) uncovered treatment effect heterogeneity that was non-uniformly distributed 

in the topological space. Horizontal and vertical axes which represent the first and second 

uniform manifold approximation and projection dimensions have been omitted. 
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Supplemental Figure S2. Learning curve for a 15-variable tool predicting the 

individualized benefit of canagliflozin for the primary MACE outcome in CANVAS. Panel 

depicts the loss function (root mean square error) with five-fold cross-validation across several 

rounds of training in the CANVAS trial with the optimal validation loss reached after a total of 

194 iterations (rounds). INSIGHT: INdividualized cardiovaScular rIsk reduction with sGlt2 

inHibiTors. MACE: major adverse cardiovascular events; RMSE: root mean square error. 

Figure S1.
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Supplemental Figure S3. Observed risk across high and low predicted canagliflozin benefit 

groups based on the INSIGHT tool, after excluding circulating creatine kinase levels. 

hospitalization in CANVAS-R. CI: confidence interval; INSIGHT: INdividualized 

cardiovaScular rIsk reduction with sGlt2 inHibiTors; MACE: major adverse cardiac events.

Supplemental Figure S3
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Supplemental Figure S4. An online browser-accessible version of the INSIGHT decision 

support tool. A browser-accessible version of the INSIGHT decision support tool is available 

which enables its prospective and external application. The figure demonstrates three examples 

of patients in whom the use of canagliflozin is associated with a high (A), intermediate (B), and 

Figure S5.

High responderA.

Moderate responderB.

Low responderC.
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low (C) predicted reduction in their respective ASCVD risk. INSIGHT: INdividualized 

cardiovaScular rIsk reduction with sGlt2 inHibiTors.  
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