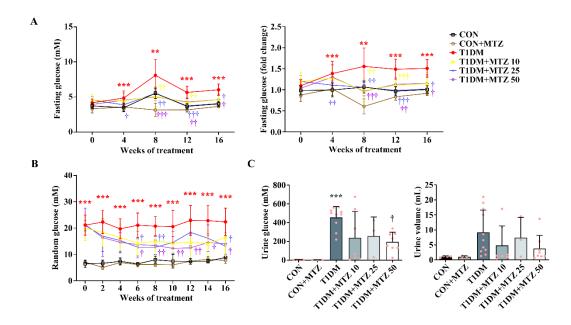
Online Appendix

Gene	Primer sequences		Tm	Product	GenBank			
				length	Accession			
					numbers			
Primer used	in RT-qPC							
Gapdh	Forward	AGG TCG GTG TGA ACG	60.88	95	XM_0361			
	(5'→3')	GAT TTG			65840.1			
	Reverse	GGG GTC GTT GAT GGC	60.60					
	(3'→5')	AAC A						
β -catenin	Forward	TCA AGA GAG CAA GCT	60.08	115	NM_0011			
	(5'→3')	CAT CAT TCT			65902.1			
	Reverse	CAC CTT CAG CAC TCT	61.05					
	(3'→5')	GCT TGT G						
Axin1	Forward	GTTCCAGAGAGGGCTGGT	59.70	282	NM_0011			
	(5'→3')	G			59598.2			
	Reverse	GCGCTGCACCCTAATACCT	60.88					
	(3'→5')	С						
Small interfe	ering RNA							
Axin1-1	GAACTGGTATCCACTGATT							
Axin1-2	GCCATCTACCGAAAGTACA							

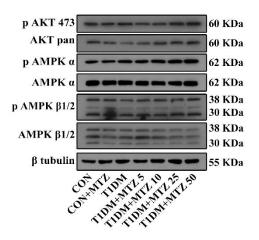
Supplementary Table 1 The gene primer sequences used in experiments

Axin1-3 GCCCACTTTGAATGAAGAT

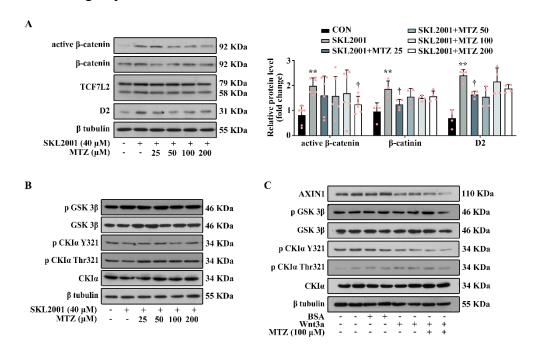

Antibodies	Manufactures and catalogue numbers	Application and dilution	
CA1 (29 KDa)	Abcam #ab108367	WB (1:5000)	
CA2 (29 KDa)	Abcam #ab124687	WB (1:3000)	
active β-catenin (92 KDa)	CST #8814	WB (1:3000)	
β-catenin (92 KDa)	CST #8480	IP (1:50)	
β-catenin (92 KDa)	CST #9582	If (1:100)	
β-catenin (92 KDa)	Servicebio #GB11015	WB (1:5000)	
TCF4/7L2 (58, 79 KDa)	CST #2569	WB (1:2000)	
Cyclin D2 (31 KDa)	CST #3741	WB (1:5000)	
ANP (17 KDa)	Santa Cruz #sc-515701	WB (1:5000)	
Axin1 (110 KDa)	RD #AF3287	IF (1:100)	
Axin1 (110 KDa)	CST #2087	WB (1:3000), IP (1:50)	
GSK 3β (46 KDa)	CST #9315	WB (1:5000)	
phosphor-GSK 3β Ser9 (46 KDa)	CST #9323	WB (1:5000)	
CK1a (34 KDa)	Abcam #ab108296	WB (1:5000)	
phospho-CK1a Y321 (34 KDa)	Bioworld #BS4602	WB (1:3000)	
phospho-CK1a Thr321 (34 KDa)	Invitrogen #PA5-36790	WB (1:3000)	
AKT (60 KDa)	CST #4691	WB (1:3000)	
phosphor-AKT 473 (60 KDa)	CST #4060	WB (1:3000)	
AMPKa (62 KDa)	CST #5831	WB (1:5000)	
phospho-AMPKa (62 KDa)	CST #2523	WB (1:3000)	
AMPKβ1/2 (30, 38 KDa)	CST #4150	WB (1:5000)	
phospho-AMPK β1/2 (30, 38 KDa)	CST #4186	WB (1:3000)	
β tubulin (55 KDa)	MilliporeSigma #T4026	WB (1:5000)	

Supplementary Table 2 The antibodies used in experiments

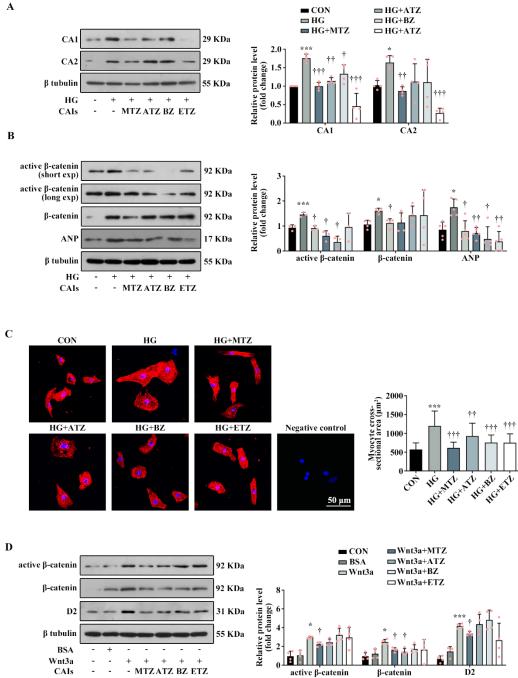
	Control	Control+MTZ 50	T1DM	T1DM+MTZ 10	T1DM+MTZ 25	T1DM+MTZ 50		
AET (ms)	52.36 ± 1.84	51.06 ± 2.56	55.93 ± 1.11	57.72 ± 2.37	57.98 ± 3.29	60.04 ± 3.13		
IVCT (ms)	10.78 ± 1.08	7.52 ± 1.74	$6.75\pm0.64\ ^*$	7.92 ± 1.18	$11.90\pm1.39~^\dagger$	9.38 ± 1.22		
IVRT (ms)	12.18 ± 1.24	11.58 ± 1.81	11.15 ± 1.20	13.11 ± 1.53	12.82 ± 2.74	7.42 ± 1.33		
MV ET (ms)	69.91 ± 2.86	64.71 ± 2.58	69.66 ± 1.86	65.81 ± 2.60	72.14 ± 4.674	$62.69\pm1.21~^\dagger$		
MPI	0.52 ± 0.05	0.42 ± 0.09	0.35 ± 0.03 *	0.44 ± 0.06	$0.58\pm0.06~^\dagger$	0.30 ± 0.03		
Stroke volume (µL)	43.07 ± 1.30	40.54 ± 2.51	34.90 ± 1.15 ***	37.73 ± 2.10	31.49 ± 0.95	34.16 ± 1.43		
Ejection fraction (%)	60.40 ± 1.32	55.30 ± 3.72	54.47 ± 0.95 *	56.08 ± 2.06	55.20 ± 1.56	57.38 ± 2.57		
Fractional shortening (%)	31.94 ± 0.90	28.62 ± 2.34	27.83 ± 0.60 *	29.01 ± 1.31	28.20 ± 1.01	29.87 ± 1.74		
Cardiac output (mL/min)	17.88 ± 0.74	19.34 ± 1.58	16.25 ± 0.56	16.38 ± 1.05	$12.62\pm0.78~^\dagger$	15.06 ± 0.72		


Supplementary Table 3 Effects of MTZ on cardiac function in STZ-induced T1DM mice

*p < 0.05 or ***p < 0.001 vs. CON group; †p < 0.05 vs. T1DM; n = 3-10.

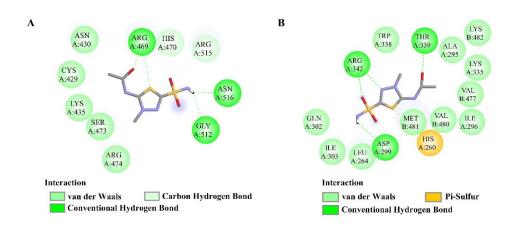

Supplementary Figure 1 Methazolamide showed a hypoglycemic effect and improved glucose tolerance in T1DM mice.

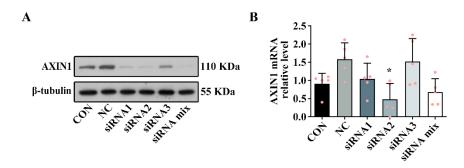
A: Fasting blood glucose levels (Left) and its fold change (**Right**) in various groups of mice at the indicated time-points. **B**: The random blood glucose levels of several groups' mice in the indicated times. **C**: The total urine glucose concentration and the urine volume of several groups' mice in the indicated groups in 24 h. **P < 0.01 or ***P < 0.001 vs. Control; $^{\dagger}P < 0.05$, $^{\dagger\dagger}P < 0.01$, or $^{\dagger\dagger\dagger}P < 0.001$ vs. T1DM; n = 3-10 mice per group.


Supplementary Figure 2 Methazolamide did not affect AKT and AMPK pathway in T1DM mice heart. Representative western blot results of the relative protein levels of p AKT473, AKT, p AMPK α , AMPK α , p AMPK β 1/2, and AMPK β 1/2 in hearts from

the indicated groups.

Supplementary Figure 3 Methazolamide attenuated Wnt/β -catenin pathway in SKL2001- or Wnt3a-treated NRCMs.


A: Representative Western blot and quantitative results of the relative protein levels of active β-catenin, β-catenin, TCF7L2, and D2 in NRCMs subject to SKL2001 with or without MTZ (48 h). **P < 0.01 vs. Control; [†]P < 0.05 vs. SKL2001. The above results from four to six independent experiments. **B**: Representative Western blot results of the relative protein levels of β-catenin degradation complex members (p GSK3β, GSK3β, p CKIα, and CKIα) in NRCMs treated as indicated in **A**. **C**: Representative western blot results of the relative protein levels of β-catenin degradation complex members (p GSK3β, GSK3β, p CKIα, and CKIα) in NRCMs treated as indicated in **A**. **C**: Representative western blot results of the relative protein levels of β-catenin degradation complex members (p GSK3β, GSK3β, p CKIα, and CKIα) in NRCMs subject to Wnt3a with or without MTZ (48 h).


Supplementary Figure 4 CA inhibitors decreased CAs and β-catenin in high glucoseor Wnt3a-treated NRCMs.

A and B: Representative Western blot and quantitative results of the relative protein levels of CAs, active β-catenin, β-catenin and ANP in NRCMs subject to high glucose (HG) without or with CA inhibitors (48 h). *P < 0.05 or ***P < 0.001 vs. Control; [†]P< 0.05, $^{\dagger\dagger}P$ < 0.01, or $^{\dagger\dagger\dagger}P$ < 0.001 vs. HG. The above results from three to five

independent experiments. C: Representative images of α -actinin staining and quantification of cell size were shown in the indicated groups (red: α -actinin, blue: DAPI; n = 60 NRCMs per group). ****P* < 0.001 vs. Control; ^{††}*P* < 0.01 or ^{†††}*P* < 0.001 vs. HG. **D**: Representative Western blot and quantitative results of the relative protein levels of active β -catenin, β -catenin, and cyclin D2 in NRCMs subject to Wnt3a with or without CA inhibitors (48 h). **P* < 0.05 or ****P* < 0.001 vs. Control; [†]*P* < 0.05 vs. Wnt3a. The above results from four independent experiments.

Supplementary Figure 5 The 2D diagram of ligand-receptor interaction in molecular docking was performed. A: MTZ- β -catenin interaction. B: MTZ- β -catenin-AXIN1 interaction; A chain: β -catenin; B chain: AXIN1.

Supplementary Figure 6 AXIN1 was inhibited in AXIN1 siRNA -treated NRCMs. A: Representative western blot results of AXIN1 in NRCMs subject to negative control (NC) or AXIN1 siRNA. B: Quantitative results of the relative mRNA levels of AXIN1 in NRCMs subject to NC or AXIN1 siRNA. *P < 0.05 vs. NC. The above results from

five independent experiments.