No.	SNP	CHR	BP	Nearest Gene	genotyped/	auality MAF non- (non-a		Mode (non-adjus		Model 2 (adjustment)		
		imputed (R-square)		Risk Allele	Beta(SE)	Р	Beta(SE)	Р				
1	rs1471633	1	145723739	PDZK1	Imputed	0.992	0.191	A/C	0.003(0.003)	0.314	-0.003(0.003)	0.308
2	rs1260326	2	27730940	GCKR	Genotyped	1.000	0.458	T/C	0.009(0.002)	8.50×10 ⁻⁵	0.007(0.002)	0.003
3	rs12498742	4	9944052	SLC2A9	Imputed	0.991	0.017	A/G	0.017(0.01)	0.082	0.017(0.009)	0.073
4	rs2231142	4	89052323	ABCG2	Genotyped	1.000	0.314	T/G	0.02(0.003)	5.57×10 ⁻¹⁵	0.018(0.002)	4.45×10 ⁻¹³
5	rs675209	6	7102084	RREB1	Genotyped	1.000	0.071	T/C	-0.005(0.005)	0.274	-0.003(0.004)	0.545
6	rs1165151	6	25821616	SLC17A1	Imputed	0.997	0.159	G/T	0.001(0.003)	0.667	0.003(0.003)	0.334
7	rs2078267	11	64334114	SLC22A11	Genotyped	1.000	0.019	C/T	0.004(0.009)	0.662	0.006(0.008)	0.488
8	rs478607	11	64478063	NRXN2	Imputed	0.986	0.178	G/A	0.004(0.003)	0.240	0.004(0.003)	0.179
9	rs3741414	12	57844049	INHBC	Genotyped	1.000	0.066	C/T	0.002(0.005)	0.656	0.004(0.005)	0.327
10	rs11264341	1	155151493	TRIM46	Genotyped	1.000	0.311	C/T	0.006(0.003)	0.016	0.007(0.002)	0.003
11	rs17050272	2	121306440	INHBB	Genotyped	1.000	0.458	A/G	-0.001(0.002)	0.777	-0.001(0.002)	0.764
12	rs2307394	2	148716428	ORC4L	Genotyped	1.000	0.474	C/T	-0.003(0.002)	0.235	-0.003(0.002)	0.160
13	rs6770152	3	53100214	SFMBT1	Genotyped	1.000	0.349	G/T	0.005(0.002)	0.028	0.008(0.002)	0.001
14	rs17632159	5	72431482	TMEM171	Imputed	0.972	0.287	G/C	-0.003(0.003)	0.302	-0.001(0.003)	0.628
15	rs729761	6	43804571	VEGFA	Imputed	0.972	0.132	G/T	0.003(0.003)	0.382	-0.001(0.003)	0.875
16	rs1178977	7	72857049	BAZ1B	Genotyped	1.000	0.081	A/G	-0.001(0.004)	0.898	-0.001(0.004)	0.748
17	rs17786744	8	23777006	STC1	Imputed	0.995	0.353	G/A	0.001(0.002)	0.797	0.001(0.002)	0.803
18	rs2941484	8	76478768	HNF4G	Genotyped	1.000	0.336	T/C	0.005(0.003)	0.047	0.004(0.002)	0.113
19	rs10821905	10	52646093	A1CF	Genotyped	1.000	0.037	A/G	-0.014(0.006)	0.034	-0.008(0.006)	0.218
20	rs642803	11	65560620	OVOL1	Genotyped	1.000	0.394	C/T	0.001(0.002)	0.687	-0.002(0.002)	0.426

Table S1 Association of 27 SNPs with serum uric acid in the discovery cohort of HKDR

21	rs1394125	15	76158983	UBE2Q2	Genotyped	1.000	0.078	A/G	-0.005(0.004)	0.230	-0.003(0.004)	0.517
22	rs6598541	15	99271135	IGF1R	Imputed	0.969	0.438	A/G	0.0004(0.002)	0.877	0.002(0.002)	0.310
23	rs7193778	16	69563890	NFAT5	Imputed	0.979	0.042	C/T	-0.007(0.006)	0.222	-0.006(0.006)	0.267
24	rs7188445	16	79734987	MAF	Imputed	0.983	0.289	G/A	0.006(0.003)	0.025	0.005(0.003)	0.076
25	rs7224610	17	53364788	HLF	Genotyped	1.000	0.130	C/A	0.0004(0.004)	0.902	-0.001(0.003)	0.870
26	rs2079742	17	59465697	BCAS3	Imputed	0.864	0.484	T/C	-0.0002(0.002)	0.917	0.002(0.002)	0.374
27	rs164009	17	74283669	QRICH2	Genotyped	1.000	0.346	A/G	0.002(0.002)	0.393	0.001(0.002)	0.640

Model 2 was adjusted for conventional risk factors at baseline, including age, gender, duration of diabetes, smoking, BMI, HbA1c, HDL-C, LDL-C, SBP, DBP, log-transformed ACR, eGFR, retinopathy, use of lipid lowering drugs (yes/no), antihypertensive drugs (yes/no), RAS inhibitors (yes/no), and antihyperglycemic drugs (yes/no), history of stroke, history of CHD, and history of CKD.

	AKI Cases	AKI Controls	Р
Ν	1233	2643	
Age (year)	63.7 ± 11.3	63.2 ± 9.5	0.189
Male sex	60.2% (742)	58.9% (1556)	0.441
Duration of diabetes (year)	12 (5-18)	15 (11-20)	< 0.001
Smoking status			0.103
Former	24.6% (303)	21.9% (577)	
Current	10.2% (126)	9.5% (252)	
BMI (kg/m ²)	26.5 ± 4.7	25.9 ± 4.3	0.001
HbA_{1c} (%)	7.8 ± 1.6	7.8 ± 1.3	0.927
HbA1c (mmol/mol)	62 ± 17.5	62 ± 14.2	0.927
HDL cholesterol (mmol/L)	1.2 ± 0.4	1.2 ± 0.3	0.022
LDL cholesterol (mmol/L)	2.4 ± 0.9	2.3 ± 0.7	0.043
Systolic BP (mmHg)	137.9 ± 19.5	135.5 ± 17.2	< 0.001
Diastolic BP (mmHg)	74.6 ± 11.6	73.9 ± 10.8	0.097
ACR (mg/mmol)	7.2 (2-44)	2.7 (1-10.7)	< 0.001
Retinopathy	36.3% (350)	29.9% (602)	< 0.001
Lipid lowering drugs	70.8% (862)	76.4% (1985)	< 0.001
SUA (mmol/L)	0.41 ± 0.11	0.37 ± 0.09	< 0.001

Table S2 Clinical characteristics of patients with T2D from the replication cohort of HKDB

AKI controls were defined as no AKI at least for 10 years of duration of diabetes.

	Model 1		Model 2			
	(adjustment with exclusi	on of AKI)	(adjustment with inclusion of AKI)			
	HR (95% CI)	Р	HR (95% CI)	Р		
Chronic kidney disease	4.13 (2.9-5.89)	< 0.001	3.34 (2.05-5.43)	< 0.001		
End-stage renal disease	12.96 (8.11-20.7)	< 0.001	7.3 (4.49-11.86)	< 0.001		
All-cause death	2.48 (1.6-3.82)	< 0.001	1.36 (0.87-2.1)	0.174		

Table S 3 Association of SUA with clinical outcomes in the discovery cohort of HKDR with or without adjustment for AKI.

Model 1 was adjusted for conventional risk factors, including age, gender, duration of diabetes, smoking, BMI, HbA1c, HDL-C, LDL-C, SBP, DBP, logtransformed ACR, eGFR, retinopathy, use of lipid lowering drugs (yes/no), antihypertensive drugs (yes/no), RAS inhibitors (yes/no), and antihyperglycemic drugs (yes/no), history of stroke, history of CHD, and/or history of CKD. Model 2 was adjusted for conventional risk factors in addition to AKI, which was used as time-dependent covariates in the Cox models.

	Model 1		Model 2 (adjustment)	
	(non-adjustme	ent)		
	OR	Р	OR	Р
AKI (1233 cases vs. 2643 controls)				
PRS (per SD; #SNP=27)	1.04 (0.97-1.11)	0.294	1.14 (1.04-1.25)	0.007
Tertile 1	Ref.	/	Ref.	/
Tertile 2	1.09 (0.91-1.29)	0.36	1.26 (0.99-1.6)	0.065
Tertile 3	1.22 (0.99-1.51)	0.057	1.57 (1.18-2.1)	0.002
CKD (1975 cases vs. 1996 controls)				
PRS (per SD; #SNP=27)	1.05 (0.99-1.12)	0.12	1.15 (1.05-1.27)	0.004
Tertile 1	Ref.	/	Ref.	/
Tertile 2	1.15 (0.98-1.35)	0.078	1.43 (1.12-1.83)	0.004
Tertile 3	1.22 (1.01-1.48)	0.041	1.58 (1.17-2.14)	0.003
ESRD (219 cases vs. 3286 controls)				
PRS (per SD; #SNP=27)	0.98 (0.85-1.12)	0.728	1.02 (0.83-1.24)	0.886
Tertile 1	Ref.	/	Ref.	/
Tertile 2	0.94 (0.66-1.33)	0.709	1.01 (0.6-1.71)	0.975
Tertile 3	1.06 (0.7-1.6)	0.779	1.15 (0.61-2.16)	0.666
All-cause death (138 cases vs. 5869 controls)				
PRS (per SD; #SNP=27)	0.96 (0.81-1.13)	0.597	0.91 (0.72-1.15)	0.428
Tertile 1	Ref.	/	Ref.	/
Tertile 2	1.03 (0.66-1.6)	0.892	0.79 (0.45-1.41)	0.431
Tertile 3	1.16 (0.69-1.94)	0.583	1.09 (0.56-2.14)	0.791

Table S4 Association of PRS with clinical outcomes in the replication cohort of HKDB

Model 2 was adjusted for conventional risk factors, including age, gender, duration of diabetes, smoking, BMI, HbA1c, HDL-C, LDL-C, SBP, DBP, log-transformed ACR, retinopathy, use of lipid lowering drugs (yes/no).

		Chronic kidney	disease	End-stage renal	disease	All-cause de	eath
		HR (95% CI)	Р	HR (95% CI)	Р	HR (95% CI)	Р
AKI (yes/no)		1.9 (1.63-2.21)	< 0.001	3.41 (2.96-3.93)	< 0.001	5.56 (5.07-6.09)	< 0.001
	No AKI	Ref.	/	Ref.	/	Ref.	/
AVI Samarita	Stage 1	1.46 (0.92-2.32)	< 0.001	1.65 (1.02-2.68)	< 0.001	5.09 (4.62-5.6)	< 0.001
AKI Severity	Stage 2	1.91 (1.62-2.27)	< 0.001	3.42 (2.94-3.97)	< 0.001	6.32 (5.19-7.7)	< 0.001
	Stage 3	2.16 (1.53-3.06)	< 0.001	4.34 (3.35-5.62)	0.041	7.84 (6.81-9.02)	< 0.001
	No AKI	Ref.	/	Ref.	/	Ref.	/
A KI Deservery	Complete recovery	1.53 (1.08-2.17)	< 0.001	2.42 (1.85-3.17)	< 0.001	4.67 (4.16-5.25)	< 0.001
AKI Recovery	Partial recovery	1.66 (1.30-2.11)	< 0.001	2.58 (2.11-3.15)	< 0.001	5.61 (4.83-6.51)	< 0.001
	Non-recovery	2.71 (1.85-3.98)	< 0.001	4.58 (3.38-6.2)	< 0.001	8.15 (6.96-9.54)	< 0.001

Table S5 Associations of AKI (yes/no), the status of AKI severity and recovery with clinical outcomes from the updated definitions.

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) were defined by excluding AKI and using eGFR which remained low over 3 months (eGFR <60 mL/min/1.73 m² and eGFR <15 mL/min/1.73 m² for CKD and ESRD, respectively), in addition to diagnostic codes as described in the primary analysis. The censor date was extended to June 30th, 2019. AKI, AKI severity and AKI recovery were used as time-dependent covariates in the Cox models, HRs and p-values were adjusted for conventional risk factors at baseline, including age, gender, duration of diabetes, smoking, SUA, BMI, HbA1c, HDL-C,

LDL-C, SBP, DBP, log-transformed ACR, eGFR, retinopathy, use of lipid lowering drugs, antihypertensive drugs, RAS inhibitors, and antihyperglycemic drugs, history of stroke, history of CHD, and/or history of CKD.

	Male		Female			
	HR (95% CI)	Р	HR (95% CI)	Р		
AKI	2.53 (1.38-4.65)	0.003	4.81 (2.7-8.59)	< 0.001		
Chronic kidney disease	4.30 (2.50-7.40)	< 0.001	4.09 (2.51-6.66)	< 0.001		
End-stage renal disease	21.91 (10.66-45.02)	< 0.001	7.61 (3.96-14.63)	< 0.001		
All-cause death	2.19 (1.19-4.05)	< 0.001	2.77 (1.48-5.17)	0.001		

Table S6 Association of SUA with clinical outcomes in males and females in the discovery cohort of HKDR.

Adjustment for age, duration of diabetes, smoking, BMI, HbA1c, HDL-C, LDL-C, SBP, DBP, log-transformed ACR, eGFR, retinopathy, use of lipid lowering drugs (yes/no), antihypertensive drugs (yes/no), RAS inhibitors (yes/no), antihyperglycemic drugs (yes/no), history of stroke, history of CHD, and/or history of CKD.

	Male		Female		All	
	HR (95% CI)	Р	HR (95% CI)	Р	HR (95% CI)	Р
AKI	1.18 (1.04-1.35)	0.013	1.34 (1.19-1.52)	< 0.001	1.28 (1.17-1.4)	< 0.001
Chronic kidney disease	1.37 (1.22-1.54)	< 0.001	1.53 (1.37-1.71)	< 0.001	1.46 (1.35-1.59)	< 0.001
End-stage renal disease	1.86 (1.56-2.21)	< 0.001	1.44 (1.21-1.71)	< 0.001	1.67 (1.48-1.89)	< 0.001
All-cause death	1.19 (1.03-1.37)	0.017	1.04 (0.9-1.21)	0.589	1.12 (1.02-1.24)	0.024

Table S7 Association of hyperuricemia with clinical outcomes in male, female and all patients in the discovery cohort of HKDR.

^aHyperuricemia was defined as SUA >0.42 mmol/L in male and >0.36 mmol/L in female according to the National Kidney Foundation.

^bAdjustment for age, duration of diabetes, smoking, BMI, HbA1c, HDL-C, LDL-C, SBP, DBP, log-transformed ACR, eGFR, retinopathy, use of lipid lowering drugs (yes/no), antihypertensive drugs (yes/no), RAS inhibitors (yes/no), antihyperglycemic drugs (yes/no), history of stroke, history of CHD, and/or history of CKD.

Supplementary Table S8. Associations of AKI (yes/no), the status of AKI severity and recovery with CKD and ESRD with all-cause mortality as a competing risk.

		Chronic kidney di	sease	End-stage renal di	sease
		HR (95% CI)	Р	HR (95% CI)	Р
AKI (yes/no)		11.2 (9.91-12.66)	< 0.001	11.65 (10.31-13.16)	< 0.001
	No AKI	Ref.	/	Ref.	/
	Stage 1	8.68 (7.54-9.99)	< 0.001	9.21 (8.09-10.49)	< 0.001
AKI Severity	Stage 2	22.93 (17.87-29.42)	< 0.001	18.33 (15.24-22.05)	< 0.001
	Stage 3	53.11 (39.01-72.31)	< 0.001	51.07 (41.22-63.27)	< 0.001
	No AKI	Ref.	/	Ref.	/
	Complete recovery	13.01 (10.66-15.88)	< 0.001	6.26 (5.3-7.39)	< 0.001
AKI Recovery	Partial recovery	8.69 (6.56-11.51)	< 0.001	8.42 (6.9-10.29)	< 0.001
	Non-recovery	20.53 (15.54-27.12)	< 0.001	20.36 (16.83-24.63)	< 0.001

All-cause mortality was considered as a competing risk in Fine-Gray subdistribution hazards model. HRs and p-values were adjusted for conventional risk factors at baseline, including age, gender, duration of diabetes, smoking, SUA, BMI, HbA1c, HDL-C, LDL-C, SBP, DBP, log-transformed ACR, eGFR, retinopathy, use of lipid lowering drugs, antihypertensive drugs, RAS inhibitors, and antihyperglycemic drugs, history of stroke, history of CHD, and/or history of CKD.

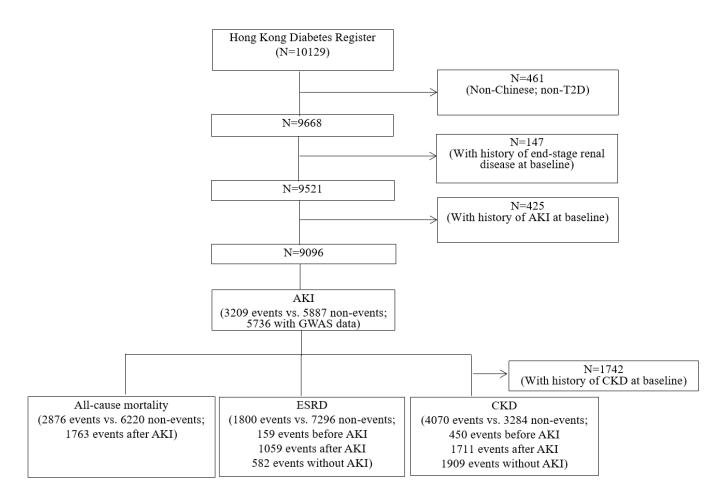
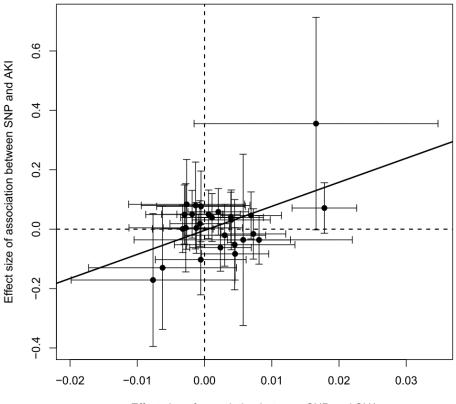



Figure S1 Sample selection from the discovery cohort of Hong Kong Diabetes Register (HKDR).

Effect size of association between SNP and SUA

Figure S2 Relationship of association effect sizes of SUA-related SNPs between SUA and AKI in the discovery cohort of HKDR. Linear regression was used to model the relationship between effect sizes for SUA and AKI (solid line). Each point represents the per allele associations of a SNP (lines from each point are 95% confidence intervals for the associations). Effect sizes were obtained from linear model for SUA and Cox model for AKI with adjustment for potential confounders.

Supplementary text

Appendix S1. Hong Kong Diabetes Register TRS Study Group Members

Ronald C.W. Ma^{1,2,3,4} Juliana C.N. Chan^{1,2,3} Yu Huang⁵ Hui-yao Lan^{1, 3} Si Lok³ Brian Tomlinson¹ Stephen K.W. Tsui⁵ Weichuan Yu⁶ Kevin Y.L. Yip⁷ Ting Fung Chan⁸ Xiaodan Fan⁹ Wing Yee So^{1,2} Cheuk Chun Szeto¹

Nelson L.S. Tang³

Andrea O. Luk^{1,2,3}

Xiaoyu Tian⁵

Guozhi Jiang¹

Claudia H.T. Tam¹

Heung Man Lee¹

Cadmon K.P. Lim¹

Katie K.H. Chan²

Fangying Xie¹

Alex C.W. Ng¹

Grace P.Y. Cheung¹

Ming-wai Yeung¹

Shi Mai⁵

Fei Xie¹

Sen Zhang⁶

Pu Yu⁶

Affiliations

¹Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong

²Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong

³Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong

⁴Integrated Bioinformatics Laboratory for Cancer Biology and Metabolic Diseases, The Chinese University of Hong Kong, Hong Kong

⁵School of Biomedical Sciences, The Chinese University of Hong Kong

⁶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology

⁷ Department of Computer Science and Engineering, The Chinese University of Hong Kong

⁸ School of Life Sciences, The Chinese University of Hong Kong

⁹ Department of Statistics, The Chinese University of Hong Kong, Hong Kong

Appendix S2. Hong Kong Diabetes Biobank Study Group Members

Ronald C.W. Ma^{1,2,3,4} Juliana C.N. Chan^{1,2,3,4} Risa Ozaki^{1,2} Andrea O. Luk^{1,2,3,4} Wing Yee So^{1,2} Ka Fai Lee⁵ Shing Chung Siu⁶ Grace Hui⁷ Chiu Chi Tsang⁸ Kam-piu Lau ⁹ Jenny Y.Y. Leung ¹⁰

Man-wo Tsang¹¹ Grace Kam¹¹ Elaine Cheung¹¹ Ip Tim Lau¹² June Kam-yin Li¹³ Vincent TF Yeung ¹⁴ Samuel Fung¹⁵ Stanley Lo¹⁶ Emmy Lau¹⁶ Yuk-lun Cheng¹⁷ Stephen Kwok-wing Tsui¹⁸ Yu Huang¹⁸ Hui-yao Lan^{1,3} Weichuan Yu¹⁹

Brian Tomlinson¹ Si Lok²⁰ Ting Fung Chan²¹ Kevin Yuk-lap Yip²² Cheuk Chun Szeto^{1,3} Xiaodan Fan²³ Nelson LS Tang^{3, 24} Xiaoyu Tian¹⁸ Claudia H.T. Tam^{1,4} Guozhi Jiang^{1,4} Shi Mai¹⁸ Baoqi Fan^{1,2,4} Fei Xie¹ Sen Zhang¹⁹ Pu Yu¹⁹ Meng Wang¹⁹

Heung Man Lee¹

Cadmon King Poo Lim ^{1,3}

Fangying Xie¹

Alex C.W. Ng^{1,4}

Grace Cheung¹

Alice PS Kong^{1,2}

Elaine Y.K. Chow^{1,2}

Ming Wai Yeung¹

Chun Chung Chow¹

Kitty K.T. Cheung¹

Rebecca Y.M. Wong¹

So Hon Cheong¹⁸

Katie KH Chan^{1,2}

Chin-san Law¹²

Anthea Ka Yuen Lock¹²

Ingrid Kwok Ying Tsang¹²

Susanna Chi Pun Chan¹²

Yin Wah Chan¹²

Cherry Chiu²

Chi Sang Hung¹¹

Cheuk Wah Ho¹¹

Ivy Hoi Yee Ng¹¹

Juliana Mun Chun Fok⁶

Kai Man Lee⁶

Hoi Sze Candy Leung¹⁴

Ka Wah Lee¹³

Hui Ming Chan¹³

Winnie Wat ¹⁶
Tracy Lau ¹⁶
Rebecca Law ¹⁵
Ryan Chan ¹⁵
Candice Lau ¹
Pearl Tsang ¹
Vince Chan ¹
Lap Ying Ho ¹
Eva Wong ¹
Josephine Chan ¹
Sau Fung Lam ¹
Jessy Pang ¹
Yee Mui Lee ¹

¹ Department of Medicine and Therapeutics, The Chinese University of Hong Kong

² Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong

³Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong

⁴ Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine

⁵ School of Biomedical Sciences, The Chinese University of Hong Kong

⁵ Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology

⁶Department of Medicine and Geriatrics, Kwong Wah Hospital

⁷ Diabetes Centre, Tung Wah Eastern Hospital, Hong Kong

⁸ Diabetes and Education Centre, Alice Ho Miu Ling Nethersole Hospital, Hong Kong

⁹ North District Hospital, Hong Kong

¹⁰ Department of Integrated Medical Service, Ruttonjee Hospital, Hong Kong

¹¹ Diabetes Ambulatory Care Centre, Department of Medicine and Geriatrics, United Christian Hospital

¹² Tseung Kwan O Hospital, Hong Kong

¹³ Department of Medicine, Yan Chai Hospital, Hong Kong

¹⁴ Centre for Diabetes Education and Management, Our Lady of Maryknoll Hospital, Hong Kong

¹⁵ Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong

¹⁶ Department of Medicine, Pamela Youde Hospital Nethersole Eastern Hospital, Hong Kong.

¹⁷ Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong

¹⁸ The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada

¹⁹ School of Life Sciences, The Chinese University of Hong Kong

²⁰ Department of Computer Science and Engineering, The Chinese University of Hong Kong

²¹ Department of Statistics, The Chinese University of Hong Kong

²² Department of Chemical Pathology, The Chinese University of Hong Kong

²³ CUHK-SJTU Joint Research Centre on Diabetes Genomics and Precision Medicine

²⁴Integrated Bioinformatics Laboratory for Cancer and Metabolic Diseases, The Chinese

University of Hong Kong