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Introduction 
Gestational diabetes mellitus (GDM) occurs in up to 18% of pregnancies and is a risk factor 

for additional pregnancy complications [1] and metabolic disease in the offspring in 

adulthood. The relationship between maternal glucose metabolism and the risk of 

pregnancy complications [2], birth weight [3] and the development of obesity and diabetes 

in adulthood [4, 5] has been found to be linear. This latter relationship is attributable to the 

adverse prenatal environment, more so than familial  or genetic factors [6] and a Mendelian 

Randomization (MR) study suggested that this dose-dependent effect is causal [7].  

This imprint of the prenatal environment on adult health is hypothesized to be 

mediated through alterations in epigenetic marks [8].  The best studied epigenetic mark is 

DNA methylation (DNAm), a modification of CpG dinucleotides associated with gene 

expression potential [9]. Candidate gene studies uncovered a linear [10], and an MR study a 

possible causal [11], effect of maternal glucose on child DNAm.  

Objective 
We will undertake multiple EWAs to identify candidate “maternal glucose responsive 

(MGR)” loci. As (fasted) serum glucose, our main exposure variable, is just one facet that 

represents maternal glucose metabolism we will also undertake a genome-scale screen of 

maternal (fasted) insulin and oral glucose tolerance test (OGTT) (when available) [12] 

measurements. These candidate MGR loci identified in these analyses will be subjected to 

causal modelling and mediation analysis to understand the role of potentially modifiable co-

variates (e.g. life-style, breastfeeding duration etc) and will like-wise be tested for 

associations with adult disease. 

The models in our genome-wide screen will be minimal, e.g. adjusting for only a few 

covariates, based on Directed Acyclic Diagrams (DAG) (Supplemental 1, Supplemental 

Figures 1 and 2).  
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If you wish to join the meta-EWAS 
Please fill in the supplemental excel file which asks cohort details and detailed contact information 

and read the analysis plan. Send the supplemental excel file and any questions you have when 

reading the analysis plan BEFORE embarking on the actual EWAS analyses to Elmar.tobi@wur.nl and 

mhivert@partners.org 

 

Overall objective 

- To investigate the associations of maternal glucose metabolism during pregnancy 

with offspring DNAm. 

Specific objectives 

- To investigate DNA methylation profiles in newborn blood and blood collected in 

later childhood in relation to maternal fasting glucose levels (plasma or whole blood 

values) during pregnancy. 

If available in the cohort: 

- To investigate DNA methylation profiles in newborn blood and blood collected in 

childhood in relation to the maternal glucose response to OGTT during pregnancy. 

- To investigate DNA methylation profiles in newborn blood and blood collected in 

childhood in relation to maternal fasted serum insulin levels during pregnancy. 

 

Exclusions and special considerations 

• Exclude multiple births (i.e. singleton only analysis) and multiple siblings from the 

same family (include 1 child per family in case of multiple siblings from the same 

family). 

• Exclude preterm offspring born at <36weeks (e.g. <252 days into gestation) 

• Exclude offspring of mothers with pre-existing type 1 or type 2 diabetes before 

pregnancy. If your cohort has a large fraction of such cases, please let us know, as 

these may be interesting for potential downstream analyses. 

• For pregnancies complicated by GDM: INCLUDE offspring in which the mother 

started GDM treatment after the glucose/insulin measurement, using adjustments 

defined later in this document. EXCLUDE offspring from mothers in whom treatment 

for GDM was started before the main glucose/insulin measurement moment used in 

the cohort. 

• High GDM risk cohorts should clearly note the high-risk nature of their cohort in 

their cohort description in the readme file and when supplying the test statistics to 

the meta-analysis centre. 
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Exposures 

- Maternal fasted glucose during pregnancy. 

o the glucose values should be in mmol/L!!   

o if only non-fasted serum glucose measurements are available contact the 

meta-analysis center 

o if a mixture of fasted and non-fasted measurements is available: adjust in the 

statistical models for non-fasted state (with fasted as reference category, e.g 

“0” and non-fasted as “1”) 

o If the available measurements are a mixture of serum and whole blood 

measurements contact the meta-analysis center 

o if multiple measurements in pregnancy are available: take the earliest 

measurement 

o if only an oral glucose tolerance test is available take the serum glucose 

measurement at 0 minutes    

- maternal glucose response to OGTT during pregnancy. 

o Calculate the area under the curve using the trapezoid method (like detailed 

in Matthew et al. BMJ 1990, appendix II) for 0 min, 60 min and 120 min 

measurement moments only (!) in mmol/L (!!!). 

 

ti is time of measurement at moment i 

yi is the serum glucose measurement at moment i 

 

AUC =  
1

2
 ∑ (𝑡𝑖+1 −  𝑡𝑖)(𝑦𝑖 + 𝑦𝑖+1)𝑛−1

𝑖=0  

Example OGTT AUC calculation 

Time 0 min 60 min 120 min 

Glucose 5 mmol/L 8 mmol/L 6 mmol/L 

 

AUC = 0.5*( (60 – 0) *(5+8) + (120 – 60)*(8+6) ) 
 
[ AUC = 0.5 * ((time=60 minutes) –(time=0 minutes)) * (glucose level at time=0 minutes  
+glucose level at time=60 minutes) + ((time=120 minutes) – (time=60 minutes)) * ((glucose  
level at time=60 minutes) + (glucose level at time=120 minutes)) ] 
 
 

  



- Log2 transformed maternal fasted insulin levels during pregnancy. 

o Make sure the insulin values are in pmol/L (e.g. picomol/L) before the log2 

transformation (so NOT log10), if not recalculate to pmol/L (the molecular 

weight of insulin is 5734 grams/mol) 

o if only non-fasted measurements are available contact the meta-analysis 

center 

o if a mixture of fasted and non-fasted measurements is available: adjust in the 

statistical models for non-fasted state (with fasted as reference category) 

o if multiple measurements are available: take the earliest measurement 

o if only an oral glucose tolerance test is available take the serum insulin at 0 

minutes of the OGTT 

 

Outcome: newborn/childhood DNA methylation 

Illumina Infinium 450k / 850k methylation data in (newborn) offspring blood as available in 

your cohort. The autosomal “Beta values” will be used as the outcome. Please normalize 

using your preferred normalization package and indicate which that was in the readme file. 

Use preferred study QC settings for probe filtering. If in any doubt, please include rather 

than exclude probes at this stage. We are not excluding outlier values in the beta values (so 

no “3IQR filtering”).     

 

Repeated measurement for DNA methylation 

Some cohorts will have multiple DNA methylation measurements for the same child. Please 

do the following for this meta-EWAS: 

• In the case of a measurement at birth (cord blood) and at one later 

childhood/adolescence age: 

Run separate analyses for the cord blood measurement at birth and a separate 

analysis for the measurement at a later childhood age (e.g. two EWAS) 

• In the case of a measurement at birth (cord blood) and multiple measurements 

during childhood and adolescence: 

Run separate analyses for the cord blood measurement at birth and an analysis for 

the youngest childhood measurement. 

• In the case of multiple measurements during childhood/adolescence: 

Run an analysis for the youngest measurement.  

 

We will want to do follow-up longitudinal analyses of significant findings from the cross-

sectional analyses. Please fill in details about the availability of repeated measurement in 

your cohort description  

 



Covariates 

• Sex: sex of the child. Binary encoding (e.g.  0 /1 (female/male)) 

• Maternal Age: continuous in years (e.g. 34 and numeric) 

• Gestational Age at glucose/insulin measurement:  continuous in days (e.g. 110 and 

numeric) 

• Gestational Age at birth:  continuous in days (e.g. 110 and numeric) 

• Parity: Binary encoding with first child coded as 0 and higher parities coded as 1 (e.g. 

0 or 1 and numeric). 

• Batch covariates: Adjustment for batch effects should be done by including the most 

important covariate(s) (for example, position on micro-array and bisulfite plate) from 

each individual cohort. Alternatively, a batch correction method such as ComBat is 

fine. Please indicate clearly in the cohort description how the data is processed and 

which batch effects are corrected for. 

• Estimated cell types: Please include in relevant models (see below). These cell 

proportions should be included additively in the model. Cell proportions are 

estimated using estimateCellCounts () in the minfi R package. For newborn cord 

blood methylation, please select “cordBlood” in the estimateCellCounts() function, 

and include the 7 cell types imputed: nRBC, CD8T, CD4T, NK, Bcell, Mono, Gran.  For 

the childhood/adolescence analysis use estimateCellCounts () in the minfi R package 

with reference FlowSorted.Blood.450k (450k, e.k.a the “Reinius reference set”) or  

FlowSorted.Blood.EPIC (850k), and include the 6 cell types: CD8T, CD4T, NK, Bcell, 

Mono, Gran.   

• Ancestry: optional covariate. Please analyse major ethnic groups separately (e.g. 

European, Latino, African, Asian ancestry). If necessary, a cohort may include PCs 

from a GWAS within a specific ancestry if available.  Please define clearly in the 

cohort description how ancestry was coded/handled.   

• Age:  for the childhood/adolescence analysis, the age at blood sampling. Continuous 

in years (e.g. 12.4y and numeric) 

• Selection_factors: optional covariate. Please include if relevant for your study, for 

example if your sample contains cases and controls of some condition, please 

include the case/control variable and clearly denote what was done in your readme 

file. 

  



• Fasted: optional covariate for glucose and insulin analyses. When a subset of 

glycaemic measurements has been done in the cohort on a non-fasted pregnant 

woman adjust for this difference. Binary encoding (e.g. 0 or 1 and numeric) with the 

fasted group as reference (e.g. 0). 

• GDM_treatment: optional covariate for glucose and insulin analyses. In the case 

where a treatment for GDM has been initiated after the glucose/insulin analyses 

adjust for this effect. Factorial variable with the non GDM group as reference (e.g. 0), 

GDM cases with treatment via diet coded as the next level (e.g. 1) and GDM cases 

treated with pharmacological agents (insulin etc) with and without diet changes as 

the highest factorial level (e.g. 2).  

• Please do not include further covariates. If you feel strongly that you need to include 

additional covariates, please contact us. 

 

 

 

Models and analyses  

• Robust linear regression modelling (rlm() option in R) for each CpG site individually. 

• Important differences between models are highlighted 

1) Cord Blood Models 

a. Crude model for cord blood (+ add if necessary) 

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement + batch effects (+ fasted + Ancestry + GDM_treatment + 

selection_factor) 

b. Crude model for cord blood with cell type adjustment   

Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement +   batch effects + sex + Cellular heterogeneity 

(+ fasted + Ancestry + GDM_treatment + selection_factor) 

c. Extended model for cord blood:  

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement + sex + gestational age at birth + parity + maternal age + batch 

(+ fasted + Ancestry + GDM_treatment + selection_factor) 

 

d. Extended model for cord blood with cell type adjustment:   

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement + gestational age at birth + parity + maternal age + batch + 

sex + Cellular heterogeneity (+ fasted + Ancestry + GDM_treatment + 

selection_factor) 

 

 



2) Non-Cord Blood Models (differences highlighted) for childhood/adolescence analysis 

a. Crude model for non-cord blood 

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement + age at blood sampling + batch effects (+ fasted + Ancestry + 

GDM_treatment + selection_factor) 

b. Crude model for non-cord blood with cell type adjustment   

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement + sex + batch effects +   age at blood sampling +  Cellular 

heterogeneity (+ fasted + Ancestry + GDM_treatment + selection_factor) 

c. Extended model for non-cord blood:  

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement +   sex + gestational age at birth +parity + maternal age during 

pregnancy + age at blood sampling + batch (+ fasted + Ancestry + 

GDM_treatment + selection_factor) 

d. Extended model for non-cord blood with cell type adjustment:   

i. Beta-value ~ glycemic measurement + gestational age at glycemic 

measurement +   sex + gestational age at birth +parity + maternal age + 

batch + age at blood sampling + Cellular heterogeneity (+ fasted + Ancestry 

+ GDM_treatment + selection_factor) 

• Please do not adjust your P-values for multiple testing. 

 

How to deal with missing variables 

• Exclude samples with missing observations for any of the covariates (complete case 

analysis). Also base the descriptive table on the set of samples without missings (a 

descriptives table is made in the EWAS R script).  

 

Time plan 

• July 25th , 2019               Final call for joining the EWAS 

• August 5th , 2019   Results upload to meta-analysis center 

• September 25th, 2019   Meta-analyses completed; start downstream  

analyses 

 

  



Data file format 

• Tab delimited file; one row per probe. First row is a header with labels as defined in 

the table below. 

• For file naming, please use the following convention: 

o [COHORT]_EWAS_[phenotype]_[Moment]_[Datestamp].txt.gz 

o Cohort = name of cohort in capital letters, no special symbols 

o Phenotype = “glucose”, “insulin”, “OGT_Xgrams” 

o Moment is “birth” (e.g. cord-blood) or “later” (non-cordblood) 

o Datestamp is the date on which the file was prepared. Please use the following 

format “YYYY_MM_DD”. 

For example: HAVEN_EWAS_glucose_later_2019_02_20.txt.gz  

• A table containing cohort name, phenotype, moment, total sample size, calculated 
lambda for each model (e.g 
”lambda_mA","lambda_mB","lambda_mC","lambda_mD" for model a till d: see 
Example Code). Please use naming convention 
[COHORT]_Lambdas_[phenotype]_[Moment]_[Datestamp].txt  

 

• Data file contents requirements: 

o If you have missing data in your results file, please do not leave any cells blank. 

Missing data should be denoted by NA. 

o No quotes should be used around any data cells or headers. 

o Please provide all numeric data with at least 4 decimal places. P-values should be 

specified to at least 4 relevant digits. 

 

README file 

With your data, please upload a readme file with a short description containing the 

following paragraphs: 

o Cohort description: short description of the cohort 

o Data handling: the normalization and QC steps taken in your study 

o Batches: the batch effects for which you adjusted 

o Specific variables: any cohort specific variable for which you adjusted 

o Ages: information about the ages of the offspring included 

o File information: Any additional information about the uploaded files worth 

noting 

 

 

 

  



Results format table 

Column Header Description Format Examples 

Estimate_mA Effect size model A String 0.0237  

SE_mA Standard error 
model A 

Numeric 0.0172 

Zval_mA Z value model A Numeric 1.3802 

P_mA P value model B Scientific E notation with 
at least 3 digits to the 
right of the decimal  

3.244E-10 

N_mA N individuals 
analysed for model 
A 

Numeric 650 

Estimate_mB Idem A for model B   

SE_mB Idem A for model B   

Zval_mB Idem A for model B   

P_mB Idem A for model B   

N_mB Idem A for model B   

Estimate_mC Idem A for model C   

SE_mC Idem A for model C   

Zval_mC Idem A for model C   

P_mC Idem A for model C   

N_mC Idem A for model C   

Estimate_mD Idem A for model D   

SE_mD Idem A for model D   

Zval_mD Idem A for model D   

P_mD Idem A for model D   

N_mD Idem A for model D   

probeID Name of probe Character cg00000957 

Data exchange 

When finished, contact us, and we will send a link for result upload.  Send an email to 

Elmar.tobi@wur.nl and Diana_Lizeth_Juvinao-Quintero@harvardpilgrim.org 
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Primary contacts for questions about the analysis:  

Elmar Tobi (elmar.tobi@wur.nl) 
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Supplement 1. DAG analysis 
We hypothesize that there is a direct effect of maternal glucose on child DNAm methylation in a 

dose-response manner, analogue to the associations between maternal glucose and birthweight[3] 

and pregnancy complications, like preterm birth and caesarian delivery [2]. For the DAG (Figure 1) 

we formalize the following relationships. Maternal glucose levels are influenced by maternal body 

mass index and multiple (micro)nutrients in the maternal diet, in particular carbohydrate quality 

[13], but also vitamin D [14], magnesium and vitamin E [15]. Diet may also influence glucose 

metabolism through maternal insulin sensitivity [16], which is also influenced by exercise during 

pregnancy [17]. Maternal age has been linked to SES, as women in lower SES groups generally give 

birth to their first child at an earlier age, while older maternal age has been linked to the increased 

risk of caesarian section and preterm birth [18]. Most of the mentioned lifestyle covariates are 

linked to socio-economic status and ethnicity, which are also associated with alcohol consumption. 

Alcohol is energy-rich, but evidence suggests that only heavy drinking has a measurable contribution 

to obesity [19]. Alcohol is a source of cellular stress and thereby inhibits prenatal growth [20]. There 

are conflicting reports about the influence of alcohol on serum glucose levels, but Mendelian 

randomization approaches so far did not provide evidence to support a causal relationship in women 

[21] and this relation is therefore not considered here. Glucose is a major driver of fetal growth as 

the main energy carrier, but it is logical that essential (micro)nutrients and fatty acids from the 

maternal diet are also directly linked to growth, as the child cannot synthesize them, and shortage of 

the basic building blocks may be argued to stagnate growth. Furthermore, parity is a major 

independent determinant of birthweight [22]. Sex will explain a large portion of the variation in 

DNAm and is also associated with birthweight. DNAm is influenced heavily by batch effects, which 

will be cohort-specific, but should be independent of biological covariates when randomization of 

samples across arrays has been done correctly. Also, cellular heterogeneity of cord blood leads to 

additional variation in DNAm for a large subset of 450k probes. For a subset of CpGs it might be 

argued that DNAm is merely a reflection of cellular heterogeneity (e.g. cellular heterogeneity is the 

DAG parent of DNAm) (Figure 1), while for another subset DNAm is part of the causal epigenetic 

mechanism enforcing cell identity (e.g. DNAm is the parent of cell heterogeneity) (Figure 2). Smoke 

exposure and pregnancy complications like pre-eclampsia and caesarian section are linked to 

variation in blood cellular heterogeneity [23, 24]. Therefore, it is important to consider cellular 

heterogeneity as a potential collider in the latter scenario (Figure 2).  

We considered these scenarios in the DAG program dagitty [25]. For the scenario in which 

cellular heterogeneity influences DNAm (Figure 1) adjustment for both cellular heterogeneity and 

sex is required to ascertain a direct effect of glucose exposure on DNA methylation. In a scenario 

where DNAm in cord blood drives cellular heterogeneity (Figure 2) adjustment for cellular 

heterogeneity will make the ascertainment of a direct effect impossible according to the DAG. In this 

scenario no adjustment for sex and cellular heterogeneity is required to ascertain a direct effect of 

glucose on DNAm. In both scenarios adjustment for batch effects may help increase the study power 

by explaining nuisance variation. These leads to the following minimal models: 

For the first scenario (Supplemental Figure 1) the model is: 

Beta-value ~ glycemic measurement + gestational age at glycemic measurement + sex + batch 

effects + Cellular heterogeneity 



For the second scenario (Supplemental Figure 2) the model is: 

Beta-value ~ glycemic measurement + gestational age at glycemic measurement + batch effects 

Multiple studies in the meta-analysis have measured glucose at differing gestational ages within a 

study. Moreover, maternal BMI and behavior (diet and exercise) will vary across gestation. Since 

most studies start measurements after the moment that the expecting mother knows she is 

pregnant the measurement timepoint will unlikely have effect on smoking and drinking behavior. 

DAG analysis shows that the moment of measurement does not influence the ascertainment of a 

direct effect. Inclusion may take away heterogeneity and may therefore improve study power. DAG 

analysis shows that the inclusion of this covariate does not influence the possibility to ascertain a 

direct effect and allows for sex adjustment in both cell heterogeneity scenarios (e.g. both Figure 1 

and Figure 2). When we assess the effect of these additional covariates within our DAG framework a 

direct effect can be found between glucose and DNAm with such an extended model in the first 

scenario (Figure 1), now including adjustment for sex.  

Beta-value ~ glycemic measurement + gestational age at glycemic measurement + sex + gestational 

age at birth +parity + maternal age + batch effects + Cellular heterogeneity 

In the second scenario (Figure 2) where cellular heterogeneity is a collider adjustment is possible, 

but without adjustment for cellular heterogeneity. 

Beta-value ~ glycemic measurement + gestational age at glycemic measurement + sex + gestational 

age at birth +parity + maternal age + batch  

 

 

 

 

 

 



Figure 1. DAG of in utero situation 

 

 

 

  

 

 

 



   

Figure 2. DAG of in utero situation, with cell heterogeneity of blood as collider 

  



Supplement 2. R code for EWAS 

 

Please email Elmar Tobi (elmar.tobi@wur.nl) for questions or clarifications.   

#################################################################### 
#################################################################### 
#### Script for glycemic varibels EWASses PREciSE   ################ 
#################################################################### 
 
######################################################### 
# author: E.W. Tobi elmar.tobi@wur.nl 
# based on scripts used in the PACE consortium; compatible with both Windows AND Linux based operating systems 
# by deleting or inclusion of one line of code! Please carefully read  
# 
########################################################## 
 
### the following code checks if the required packages are installed, if not it installs them 
####### requires (local) admin rights on your computer/cluster to install packages! AND access to internet 
 
packages <- c("future.apply", "MASS",'sandwich',"data.table", "lmtest","R.utils") 
if (length(setdiff(packages, rownames(installed.packages()))) > 0) { 
  install.packages(setdiff(packages, rownames(installed.packages())), repos="http://cloud.r-project.org/")   
} 
 
 
######################################################## 
##### some handy functions for later on ################ 
######################################################## 
# Calculate lambda  
Lambda <- function(x) { qchisq(median(x,na.rm=T), df = 1, lower.tail = F)/  qchisq(0.5, 1) }  
 
# helper for descriptives 
descriptives <- function(x){ 
  tmp <- c(mean(x,na.rm=T),sd(x,na.rm=T),length(x),sum(is.na(x)) ) 
  names(tmp) <-c("Mean","SD","N","N_NA") 
  return(tmp) 
} 
 
 
###################################################################### 
### variables used for the naming of the result files and running rlm 
####################################################################### 
# Please give the name of the cohort without dots/spaces/tabs 
Cohort <- "HAVEN" 
 
# the date of analysis: e.g. like 2019_03_01  (march first 2019) 
Datestamp <- format(Sys.Date(),format="%Y_%m_%d") 
 
# age: fill in "birth" for cord blood or "later" for ages beyond birth1 
Moment <- "later" 
 
 
############################################################# 
### Which EWAS is this choose from: glucose, insulin, OGTT_XXgrams 
### of note denote the number of grams of glucose load used in the cohort  
### when referening to the OGTT (e.g OGTT_50grams, OGTT_75grams or OGTT_100grams) 
############################################################# 
 
# example: here fasted serum glucose: 
EWAStype <- "glucose" 



 
 
############################################################## 
# your directory containing both your beta matrix and phenotypes 
############################################################### 
DataDir <- "C:/Users/Me/PRECISE_project/temp/data" 
 
 
######################################################## 
# your desired directory for placing the outcomes/stats 
########################################################### 
OutputDir <- file.path(DataDir,"EWAS_results")   
# may also be a full path e.g. ("C:/Users/Me/PRECISE_project/temp/data/EWAS_results" in this example) 
 
 
###### load the methylation and phenotype data ########## 
########################################################## 
########################################################## 
########################################################## 
 
# jump your R session to the  
# directory where the data is.... 
setwd(DataDir) 
 
########################################################## 
# read in your DNA methylation data (only autosomes), large files in .txt and comparable formats 
# are best loaded via the data.table package fread() function! 
 
# Example a RData object containing both DNAm data (named Betas.auto in example )and phenotype file (named pheno in 
example) 
load(file="Betas_5FN_Combat.RData") 
 
### !!!!!!! required formats! 
# DNA methylation is in a matrix: rows -> probes, columns -> samples 
# phenotype is in a data.frame: rows samples, columns covariates 
 
 
# Pass the Data matrix (beta values matrix) to object Betamatrix; in example "Betas.auto" 
# default behaviour of R does not actually copy these sometimes large objects  
 
####### rename DNA methylation data file to "Betamatrix" ! 
Betamatrix <-   Betas.auto 
# for RAM saving measures: delete the old named object  
rm(Betas.auto) 
 
# Identical to above: Pass the phenotype file (data.frame) to object Phenotypes; in this example "Pheno" 
Phenotypes <- pheno 
rm(pheno) 
 
 
 
############################################################################## 
## linking phenotype file to DNAm     ######################################## 
############################################################################### 
 
# name of variable in "Phenotypes" files linking to the array or sample name in Betamatrix object 
# In example below the variable x in "Phenotypes" contains the microarray name (column names of Betamatrix object) 
# e.g. "7668610030_R04C02" etc 
array_to_phenotypefile_identifier = "x" 
 
# Now we make sure that the ordening of both files is identical: 
# since the Beta matrix can be quite large, it is efficient to re-order the phenotype and let the Betamatrix be 
Phenotypes <- Phenotypes[match(colnames(Betamatrix),Phenotypes[,array_to_phenotypefile_identifier]),] 



 
############################################################################### 
# Doublechecks: Please mind any output that is generated 
# Questions: 1. are the number of samples identical between phenotype file and Betamatrix 
#           2. Are the phenotype and betamatrix files ordered in the same way? 
#           3. Is the Betamatrix a matrix? 
#           4. Is the Phenotype file a data.frame? 
############################################################################### 
if (!dim(Phenotypes)[1]==dim(Betamatrix)[2]) { # the correct number of samples present? Should be TRUE 
  print("WRONG:number of samples is not identical between Phenotypes and Betamatrix: please fix!") 
} else { print("OK:the Betamatrix and Phenotypecontain the same number of individuals, continue") } 
 
# as a doublecheck: test if ordering of Phenotypes and Betamatrix is identical 
if (!identical(as.character(Phenotypes[,array_to_phenotypefile_identifier]),as.character(colnames(Betamatrix)) ) )  {  
  print("WRONG:ordering of files or mismatch in variable type (factor vs, character?); please check and fix") 
  } else { print("OK:the Betamatrix and Phenotype file contain the same individuals in the correct order, continue") } 
 
if(!is.matrix(Betamatrix)) { 
  print("WRONG: Beta matrix (DNAm values) is not a matrix ; please convert via: Betamatrix <- as.matrix(Betamatrix)") 
} else { print("OK:Betamatrix is matrix, therefore OK, continue") } 
 
if(!is.data.frame(Phenotypes)) { 
  print("WRONG:Phenotypes (covariate file) is not a data.frame ; please convert via: Phenotypes <- 
as.data.frame(Phenotypes)") 
} else { print("OK: Phenotype file is a data.frame, OK, continue") } 
 
 
 
################################################################# 
## Please read the Analysis Plan for inclusion/exclusion criteria 
################################################################# 
 
# example: here we select only those individuals from European descent (europeans==TRUE) 
index_Europeans <- Phenotypes$m_ethn==1 # ethnicity of child family; selecting only European descent 
 
# trim the data: include only eligable individuals 
Phenotypes  <- Phenotypes[index_Europeans,] 
# delete in the matrix all non-europeans 
todelete <- colnames(Betamatrix)[!index_Europeans]  # vector of samples to delete 
Betamatrix <- Betamatrix[,!colnames(Betamatrix) %in% todelete]  # removes the columns 
 
 
# as a doublecheck: test if ordering of Phenotypes and Betamatrix is identical 
if (!identical(as.character(Phenotypes[,array_to_phenotypefile_identifier]),as.character(colnames(Betamatrix)) ) )  {  
  print("WRONG:ordering of files or mismatch in variable type (factor vs, character?); please check and fix") 
} else { print("OK:the Betamatrix and Phenotype file contain the same individuals in the correct order, continue") } 
 
 
 
 
 
############# gather the required covariates for the analysis ####################################### 
####################################################################################################
# 
####################################################################################################
# 
# Please read the Analysis Plan for details on which covariates to include for your cohort! 
# AND how to code them! (only added in short here!) 
 
ID <- Phenotypes[,array_to_phenotypefile_identifier]  # array identifier; here used as a proxy for person identifier 
 
# get the glycemic variable: log2 transform insulin, do NOTlog transform glucose 
# please check if the variables are in S.I. measurements required for the meta-analysis 



Y <-  log2(Phenotypes[,"m_insulin"])   # the fasted glucose measurements,or other glycaemic measure 
                                  
 
# additional (biological) covariates 
# gestational age at glycaemic measurement 
GA_measure <- Phenotypes[,"GAatmeasurement"]    # gestational age at maternal measurement of glucose; in days 
 
# Sex of child 
Sex <- Phenotypes[,"Sex_child"]     # Sex of child; binary; 0/1 
Sex[Sex=="Male"] <- 1    # Sex of child; binary; 0/1 
Sex[Sex=="Female"] <- 0      # Sex of child; binary; 0/1 
 
# parity:   
Parity <- Phenotypes[,"Parity"]  # 0= nulliparous and 1 is multiparous; binary;0/1 
Parity[Parity>0] <- 1 
 
# gestational age at birth;  
GA_birth <- round(Phenotypes[,"GA_days"]/7,digits=0)      # gestational age at birth, in weeks  
 
# maternal age 
Mat_age <- Phenotypes[,"mother_age"]   # mother's age at pregnancy; in years; numeric 
 
# for non-cord blood EWAS only!! Child's age at blood sampling 
Child_age <- Phenotypes[,"child_age"]         # child's age at blood sampling; in exact years (e.g. 12.3y); numeric     
 
 
# fasted/non-fasted at the measurement; e.g. not include this variable for the AUC of the OGTT 
Fasted <- Phenotypes[,"m_nuchter"]  # glycaemic measure when fasted==0 and non-fasted==1;binary; 0/1 
Fasted[Fasted=="YES"] <- 0 
Fasted[Fasted=="NO"] <- 1 
 
# optional: GDM_treated ; factorial, 0 (reference) = non-GDM, 1 =GDM diet treatment, 2= GDM pharmacological treatment 
# GDM status:   
GDM_treatment <- Phenotypes[,"GDM_diagnosis"]   
GDM_treatment [GDM_treatment =="no_GDM"] <- 0 # 0= no-GDM  
GDM_treatment [GDM_treatment =="GDM_diet_treatment"] <- 1  #1=GDM with diet treatment 
GDM_treatment [GDM_treatment =="GDM_pharmacological_treatment"] <- 2  # 2=GDM pharmacological intervention 
 
 
 
# cellular heterogeneity: use Houseman imputed or measured major (cord) blood cell fractions 
# for the adjusted model 
C1 <-  Phenotypes[,"CD8T"]   
C2 <-  Phenotypes[,"CD4T"] 
C3 <- Phenotypes[,"NK"]   
C4 <- Phenotypes[,"Bcell"] 
C5 <- Phenotypes[,"Mono"] 
C6 <- Phenotypes[,"Gran"] 
# !!!! Do not forget the nucleated red blood cells in cord blood analyses!!!! 
C7 <- Phenotypes[,"NRC"] 
 
# specific cohort variables: like case-control status, delete if not appropriate for your cohort design! 
S1 <- Phenotypes[,"Status"]    # e.g  case-control status or other relevant covariate 
 
 
########################################### 
# technical covariates; cohort specific 
# !!!!!!!!!!!!!!!!!!!!!!!!!!!! 
######################################### 
 
# strongly urge participants to investigate the influence of the row on a 450k/850k array measurements 
#  if the samples have been run on automatic Illumina hybridization/washing stations 
# that are placed vertically; in that case there is a gradient in signal intensity from the  



# top to the bottom of the array.  
# The column (left or right ) has no influence in that case, so adjusting for "sentrix position" (12 levels in a factor) is  
# less efficient 
# the R01 till R06 (1-6) is the position effect that may need adjustment in your study. 
T1 <- Phenotypes[,"Position"]   # continuous (1-6) batch effect denoting the Row of "sentrix_position" R01C1 and R01C2 is 
coded as 1 ; R02C01 & R02C02 is coded as 2 
 
## some room for cohort specific Technical stuff;  
T2 <- Phenotypes[,"batches"]  # BS-plate or other relevant corrections 
 
 
####################################################################################################
###### 
####################################################################################################
###### 
### create a "Data" data.frame object from all variables noted above 
### remove individuals with missing data 
### and set all variables to either factor, character, numeric 
####################################################################################################
###### 
Data <- data.frame(cbind(ID,Y,GA_measure,Sex,GA_birth,GDM_treatment,Parity,Mat_age,Child_age,Fasted, 
                         C1,C2,C3,C4,C5,C6,C7,T1,T2,S1)) 
 
 
### phenotype data should be complete! Find rows with any NAs 
index_complete_persons <- !apply(Data,1,anyNA) 
############################################# 
 
################################################ 
### retain only individuals with complete information in the Phenotypes and Betamatrix objects 
 
Data <- Data[index_complete_persons,] 
Betamatrix <- Betamatrix[,match(Data$ID,colnames(Betamatrix))]  
 
if( ! identical(as.character(Data$ID), colnames(Betamatrix)) ){ 
  print("Wrong: Data object containing covariates does not contain the same individuals as the Betamatrix, fix before 
continuing") 
} else { print("OK! continue") } 
 
 
 
## set the variables in Data to the correct attribute type (e.g. character, factor, numeric, ordinal) 
# e.g. as the Data object has most variables denoted as a factor we need to convert to as.character first 
# to prevent the factor levels to be re-coded as new numerical values 
Data$ID <- as.character(Data$ID)  # "x" is a character (e.g. column headers in the Betamatrix are also a character) 
Data$Y <- as.numeric(as.character(Data$Y))  # glycaemic variable should be numeric; first as.character to prevent 
erroneous factor levels coded as new values 
Data$GA_measure <- as.numeric(as.character(Data$GA_measure))  # Gestational age at glycaemic measurement; numeric 
Data$Sex <- as.numeric(as.character(Data$Sex))   # Sex: 0/1 binary numeric variable 
Data$Parity <- as.numeric(as.character(Data$Parity)) # Parity: 0/1 binary numeric variable 
Data$GA_birth <- as.numeric(as.character(Data$GA_birth)) # gestational age at birth: numeric 
Data$GDM_treatment <- as.factor(Data$GDM_treatment)  # GDM treatment,0,1,2; factorial  
Data$Mat_age <- as.numeric(as.character(Data$Mat_age))  # age at pregnancy in years; numeric  
Data$Child_age <- as.numeric(as.character(Data$Child_age))  # age of child at measurement in years; numeric 
Data$Fasted <- as.numeric(as.character(Data$Fasted))  # fasted state: 0=yes, 1=no, binary; numeric 
 
# celltypes: as numeric please! CORD BLOOD: DO NOT FORGET THAT THERE ARE 7 instead of 6 celtypes! (did you not 
forget?) 
Data$C1 <- as.numeric(as.character(Data$C1)) 
Data$C2 <- as.numeric(as.character(Data$C2)) 
Data$C3 <- as.numeric(as.character(Data$C3)) 
Data$C4 <- as.numeric(as.character(Data$C4)) 
Data$C5 <- as.numeric(as.character(Data$C5)) 



Data$C6 <- as.numeric(as.character(Data$C6)) 
Data$C7 <- as.numeric(as.character(Data$C7)) 
 
# Technical (batch) variation: factor or numeric depending on variable 
Data$T1 <- as.numeric(as.character(Data$T1))  # position effect 1-6 as numeric 
Data$T2 <- as.factor(Data$T2)  # Bisulfite plate, as factor 
 
# cohort specific variables 
Data$S1 <- as.numeric(as.character(Data$S1)) 
 
 
########### create a decriptives table of only the included pregnancies ################################## 
####################################################################################################
###### 
####################################################################################################
###### 
### create a decriptives table of only the included pregnancies! (NOT whole cohort!) 
### save this as a descriptives file in the results folder 
####################################################################################################
###### 
 
# we want to know:  
# Number of children in cohort 
# maternal age; mean (SD) 
# maternal BMI; mean (SD) 
# glycaemic variable; mean (SD) 
# child age (SD) 
# gestational age at birth (SD) 
# Optional: GDM cases: N=no GDM, N=GDM diet N=GDM with pharmacological intervention 
# N individuals for each different SES scales! 
# get all the data together, only for those inlcuded in the EWAS! 
allphenotypes <- merge(Data,Phenotypes, by.x="ID", by.y=array_to_phenotypefile_identifier, type="left") 
 
### alterations required depending on which EWAS you run 
MaternalGLYC <- descriptives(allphenotypes$m_glucose)  # make descriptives of maternal glycaemic variable; here glucose 
as example 
MaternalBMI <- descriptives(allphenotypes$m_BMI)   # make descriptives of maternal BMI 
 
#### the same for each EWAS runned 
Maternalage <- descriptives(allphenotypes$Mat_age)  # make decriptives of maternal age 
GAatbirth <- descriptives(allphenotypes$GA_birth) # make descriptives of GA at birth 
 
### for older children: 
agechildren <- descriptives(allphenotypes$Child_age) 
 
##### SES scales (education levels as proxies)  
# example for a 3 level scale 
Nlow <- sum(allphenotypes$SES==1, na.rm=T) 
Nmid <- sum(allphenotypes$SES==2, na.rm=T) 
Nhigh <- sum(allphenotypes$SES==3, na.rm=T) 
NNA <- sum(is.na(allphenotypes$SES)) # number of SES unknown 
# Make a vector so that it fits togheter with the descriptives above 
Nlow <- c(NA, NA, Nlow,NA ) 
Nmid <- c(NA, NA, Nmid,NA ) 
Nhigh <- c(NA, NA, Nhigh,NA ) 
NNA <- c(NA, NA, NA , NNA ) 
 
# optional variable: when GDM cases exist include the following counts 
#NnoGDM <- sum(as.numeric(allphenotypes $GDM_treatment)==0, na.rm=T) 
#NGDMdiet <- sum(as.numeric(allphenotypes$GDM_treatment) ==1, na.rm=T) 
#NGDMdrugs <- sum(as.numeric(allphenotypes$GDM_treatment)==2, na.rm=T) 
# Make a vector so that it fits togheter with the descriptives above 
#NnoGDM <- c(NA, NA, Nlow,NA ) 



#NGDMdiet <- c(NA, NA, Nmid,NA ) 
#NGDMdrugs <- c(NA, NA, Nhigh,NA ) 
 
 
### make one table of these results, optionally add GDM diagnosis counts! 
Descriptive_Table <- rbind(Maternalage,MaternalBMI,GAatbirth,agechildren, Nlow,Nmid,Nhigh,NNA ) 
rowDescriptives <- rownames(Descriptive_Table) 
rownames(Descriptive_Table) <- NULL 
Descriptive_Table <- cbind(rowDescriptives,Descriptive_Table) 
 
# name for Desciptive Table file: 
name_descriptive_table <- paste(paste(paste(paste(Cohort,"Descriptives",EWAStype,sep="_"),Moment,sep="_"), 
Datestamp,sep="_"),"txt",sep=".") 
 
# write.away tab delimited descriptives table 
write.table(Descriptive_Table, file=file.path(OutputDir,name_descriptive_table), col.names=T, row.names=F, 
quote=F,sep="\t") 
 
 
 
################## MODELS 
####################################################################################################
###### 
####################################################################################################
###### 
#### define the models: please edit cohort specific covariates and technical covariates as appropiate 
#### please refer to the analysis plan! 
 
#### models for cord blood!  Please add optional variables as appropiate  
#formA <- formula("B ~ Y + GA_measure + Fasted + T1 + T2 + S1") 
#formB <- formula("B ~ Y + GA_measure + Fasted + Sex + T1 + T2 + S1 + C1 + C2 + C3 + C4 + C5 + C6") 
#formC <- formula("B ~ Y + GA_measure + Fasted + Sex+ GA_birth + Parity + Mat_age + T1 + T2+ S1") 
#formD <- formula("B ~ Y + GA_measure + Fasted +Sex+ GA_birth + Parity + Mat_age + C1 + C2 + C3 + C4 + C5 + C6 + T1 + 
T2+ S1") 
 
### models for non-cord blood! Please add optional variables as appropiate 
formA <- formula("B ~ Y + GA_measure + Fasted + Child_age + T1 + T2 + S1  ") 
formB <- formula("B ~ Y + GA_measure + Fasted + Child_age +  Sex + T1 + T2 + S1 + C1 + C2 + C3 + C4 + C5 + C6") 
formC <- formula("B ~ Y + GA_measure + Fasted + Child_age + Sex+ GA_birth + Parity + Mat_age + Child_age + T1 + T2+ 
S1") 
formD <- formula("B ~ Y + GA_measure + Fasted + Child_age + Sex+ GA_birth + Parity + Mat_age + Child_age + C1 + C2 + C3 
+ C4 + C5 + C6 + T1 + T2+ S1") 
 
 
######################################### 
#### Required packages ################## 
 
library(MASS) # rlm function for robust linear regression 
library(sandwich) #HuberÌs estimation of the standard error 
library(lmtest) # to use coeftest 
library(R.utils) # for gzip 
library(data.table) 
 
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
########################################### 
### all users please read carefully! 
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
library(future.apply)  # for future_lapply function; which is compatible with most back-ends (windows, linux en most 
clusters) 
# use function availableCores() to check how many cores you have on your machine 
 
availableCores() 
 



 
################################ WINDOWS USERS BEWARE!! READ THIS THOROUGHLY!! 
# You can do the EWAS serial, on one  processor core, or parallel, dividing the work over multiple processor cores 
# BUT WINDOWS will make a copy of your methylation and phenotype data for each processor core activated!!! 
# IF you have enough RAM, dont worry, but if you are working on a small desktop/laptop activating  
# to many processor cores might crash your R session!! 
 
# what is your available RAM? 
memory.limit() 
# what are you currently using? 
memory.size() 
# now make an informed decision on the number of cores you wish to use (e.g. how much duplications of RAM you can 
handle: beware running other programs at the same time also costs RAM) 
# if none choose: 1 for "workers" below; if enough RAM is available choose more! 
 
# windows users use this line of code below 
## LINUX/UNIX USER DELETE THIS 1 LINE OF CODE BELOW: 
plan(multiprocess, workers = 2)  
 
# UNIX/LINUX system: 
# to "paralellize" the running of the statistical tests over multiple processor/nodes on a LINUX system  
# choose your number of cores: example 2, see below: 
 
# WINDOWS USERS DELETE THIS ONE LINE OF CODE  
plan(multicore, workers =2) 
 
 
############# Linux AND Windows: please continue below with the EWAS 
############################################################################ 
############################################################################ 
###################################################### 
### formulating the  EWAS function  
 
 
### Load into memory:  
glucoseEWAS <- function(methcol,meth_matrix,P) { 
  if ( identical(as.character(P$ID),colnames(meth_matrix) )  ) {  # check if samples in meth_matrix and P (phenotypes) are 
identical 
   
  P$B <- meth_matrix[methcol,] 
   
  cflm = tryCatch({ 
    mod = rlm(formA,data=P,maxit=200) 
    cf = coeftest(mod, vcov=vcovHC(mod, type="HC0")) #HC0 suitable in samples >N=100 
    N <- length(mod$fitted.values) 
    cf <- cf[2, c("Estimate", "Std. Error","z value", "Pr(>|z|)")]  # 
    cf <- append(cf, N); names(cf)[4] <- "N" 
    names(cf) <-  c("Estimate_mA", "SE_mA","Zval_mA" ,"P_mA", "N_mA") 
    cf 
    }, error=function(err){ 
    cf <- c(NaN, NaN,NaN, NaN, NaN)     
    names(cf) <-  c("Estimate_mA", "SE_mA", "Zval_mA", "P_mA", "N_mA") 
    cf 
  }) 
   
  cflm2 = tryCatch({ 
    mod = rlm(formB,data=P,maxit=200) 
    cf = coeftest(mod, vcov=vcovHC(mod, type="HC0")) #HC0  
    N <- length(mod$fitted.values) 
    cf <- cf[2, c("Estimate", "Std. Error","z value" ,"Pr(>|z|)")]   
    cf <- append(cf, N); names(cf)[4] <- "N" 
    names(cf) <-  c("Estimate_mB", "SE_mB","Zval_mB", "P_mB", "N_mB") 
    cf 



  }, error=function(err){ 
    cf <- c(NaN, NaN,NaN, NaN, NaN)     
    names(cf) <-  c("Estimate_mB", "SE_mB", "Zval_mB","P_mB", "N_mB") 
    cf 
  }) 
   
  cflm3 = tryCatch({ 
    mod = rlm(formC,data=P,maxit=200) 
    cf = coeftest(mod, vcov=vcovHC(mod, type="HC0")) #HC0  
    N <- length(mod$fitted.values) 
    cf <- cf[2, c("Estimate", "Std. Error","z value" , "Pr(>|z|)")]   
    cf <- append(cf, N); names(cf)[4] <- "N" 
    names(cf) <-  c("Estimate_mC", "SE_mC","Zval_mC","P_mC", "N_mC") 
    cf 
  }, error=function(err){ 
    cf <- c(NaN,NaN,NaN, NaN, NaN)     
    names(cf) <-  c("Estimate_mC", "SE_mC","Zval_mC","P_mC", "N_mC") 
    cf 
  }) 
  
  cflm4 = tryCatch({ 
    mod = rlm(formD,data=P,maxit=200) 
    cf = coeftest(mod, vcov=vcovHC(mod, type="HC0")) #HC0  
    N <- length(mod$fitted.values) 
    cf <- cf[2, c("Estimate", "Std. Error","z value","Pr(>|z|)")]   
    cf <- append(cf, N); names(cf)[4] <- "N" 
    names(cf) <-  c("Estimate_mD", "SE_mD","Zval_mD","P_mD", "N_mD") 
    cf 
  }, error=function(err){ 
    cf <- c(NaN,NaN, NaN, NaN, NaN)     
    names(cf) <-  c("Estimate_mD", "SE_mD","Zval_mD","P_mD", "N_mD") 
    cf 
  }) 
  # stick it all together 
  outcomes <- c(cflm,cflm2,cflm3,cflm4) 
  return(outcomes) 
  } else { stop() }   # if ordering of meth_matrix en phenotype file P is NOT identical quit and trow error out of function! 
} 
 
 
############# Actually run the EWAS 
############################################################################ 
############################################################################ 
###################################################### 
# some users encounter an error when running the future.apply function below for the first time. 
# The error states that the RAM (usually 500MiB) available for “globals” (the data to be duplicated across processor cores)  
# is exceeded. 
# In this case expand the amount of RAM allowed for a global using the following code 
# example for 3Gb  (3000Mb) of available RAM 
# options(future.globals.maxSize= 3000*1024^2)  
 
 
### test these CpGs: here all CpGs in the methylation file 
CpGs <- rownames(Betamatrix) 
 
### do the EWAS using future_apply(), transpose result and make it a data.frame for easy handling. 
results <- as.data.frame(t(future_sapply(CpGs, function(x) { glucoseEWAS(methcol = x,meth_matrix = Betamatrix, P=Data ) } 
))) 
results$probeID <- rownames(results) # add CpG identifiers to results as seperate column 
rownames(results) <- NULL # remove rownames (CpG identifiers) after storing them in seperate column 
 
# create name for results file 



name_results_file <- paste(paste(paste(paste(Cohort,"EWAS",EWAStype,sep="_"),Moment,sep="_"), 
Datestamp,sep="_"),"txt",sep=".") 
 
# write.away tab delimited descriptives table 
write.table(results, file=file.path(OutputDir,name_results_file), col.names=T, row.names=F, quote=F,sep="\t") 
 
# gzip results file: 
gzip( file=file.path(OutputDir,name_results_file) ) 
 
 
 
##################### write lambdas of all analyses to seperate file: 
## Save model number, sample size & lambda to text file: 
TotalSampleSize <- dim(Data)[1] 
 
lambdas <- apply(results[,c("P_mA","P_mB","P_mC","P_mD")],2,function(x){ Lambda(x) } ) 
 
tab <- c(Cohort,EWAStype,Moment, TotalSampleSize, lambdas) 
names(tab) <- c("Cohort","EWAS","Moment","Nmax","lambda_mA","lambda_mB","lambda_mC","lambda_mD")  
tab <- t(as.data.frame(tab)) 
rownames(tab) <- NULL 
 
 
 
### !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
### look at your lambdas: are they ~OK? If not please check your data/phenotypes 
tab 
 
 
# create name for results file 
name_tab <- paste(paste(paste(paste(Cohort,"Lambdas",EWAStype,sep="_"),Moment,sep="_"), 
Datestamp,sep="_"),"txt",sep=".") 
# write away lambdas 
write.table(tab,file=file.path(OutputDir,name_tab),row.names=F, quote=F, sep="\t") 
 
 
 
 
 
 
############ Thank you for your effort! 
 

 


