Supplementary Materials for

Withaferin A promotes white adipose browning and prevents obesity

through sympathetic nerve-activated Prdm16-FATP1 axis

Supplementary Figure 1 – 6

Supplementary table 1

Supplementary Figure 1. A 3-week dose-ranging study of WA. (A-D) Mice were housed at 22°C, fed a HFD, and treated with WA at doses ranging from 0 to 200 µg/kg for 7 days (DMSO, n = 10; WA 0.2 μ g/kg, n = 5; WA 2 μ g/kg, n = 10; WA 20 μ g/kg, n = 8; WA 200 μ g/kg, n = 5). (A) Schematic illustration of experiments. Mice received DMSO for four days as acclimation, then they were treated with WA or DMSO for 7 consecutive days. (B) Body weight. (C) Adipose tissue weight. (D) Food intake. (E-H) Mice were housed at 22°C, fed a HFD, and treated with WA at doses ranging from 0 to 200 μ g/kg for 14 days (DMSO, n = 9; WA 0.2 μ g/kg, n = 5; WA 2 μ g/kg, n = 10; WA 20 $\mu g/kg$, n = 8; WA 200 $\mu g/kg$, n = 5). (E) Schematic illustration of experiments. Mice received DMSO for four days as acclimation, then they were treated with WA or DMSO for 14 consecutive days. (F) Body weight. (G) Adipose tissue weight. (H) Food intake. (I-L) Mice were housed at 22°C, fed a HFD, and treated with WA at doses ranging from 0 to 200 μ g/kg for 21 days (DMSO, n = 10; WA 0.2 μ g/kg, n = 5; WA 2 $\mu g/kg$, n = 9; WA 20 $\mu g/kg$, n = 9; WA 200 $\mu g/kg$, n = 5). (I) Schematic illustration of experiments. Mice received DMSO for four days as acclimation, then they were treated with WA or DMSO for 21 consecutive days. (J) Body weight. (K) Adipose tissue weight. (L) Food intake. (M-O) Western blot with quantification of Ucp-1 and PGC1α in iWAT of mice treated with WA for 7 days (M), for 14 days (N), and for 21 days (O). Values are mean ± SEM. Significance was determined by one-way ANOVA with Dunnett multiple comparisons. p < 0.05, p < 0.01, and p < 0.001. Supplementary Figure 2 (related to figure 1). Analysis of VO₂, VCO₂ and EE in

mice treated with WA. (A) EE of WA or DMSO-treated mice (n = 5). EE per whole

animal is plotted against body weight. In all panels, lines show fitted regressions. **(B)** Indirect calorimetry was performed to quantify the motor activity of WA or DMSO-treated mice during complete 24 hr light-dark cycles, the arrow indicates the time of WA or DMSO injection (n = 5). **(C, D)** Oxygen consumption (VO₂) (n = 5). VO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. **(E, F)** Carbon dioxide production (VCO₂) (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. Values are mean \pm SEM. Significance was determined by Student's t test. **p < 0.01.

Supplementary Figure 3 (related to figure 3). Analysis of VO₂, VCO₂ and EE in denervated or sham-operated mice treated with WA or DMSO (n = 5). EE per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (B) Indirect calorimetry was performed to quantify the motor activity of denervated or sham-operated mice treated with WA or DMSO during complete 24 hr light-dark cycles, the arrow indicates the time of WA or DMSO injection (n = 5). (C, D) VO₂ of denervated or sham-operated mice treated with WA or DMSO injection (n = 5). VO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of denervated or sham-operated mice treated mice treated with WA or DMSO (n = 5). VO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of denervated or sham-operated mice treated with WA or DMSO (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of denervated or sham-operated mice treated with WA or DMSO (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of denervated or sham-operated mice treated with WA or DMSO (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of denervated or sham-operated mice treated with WA or DMSO (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of denervated or sham-operated mice treated with WA or DMSO (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. Values are mean \pm SEM. Significance was determined by one-way ANOVA with Bonferroni test. *p < 0.05; **p < 0.01.

Supplementary Figure 4 (related to figure 5). Analysis of VO₂, VCO₂ and EE in

shGFP, shPrdm16 or shFATP1-injected mice treated with WA. (A) EE of shGFP, shPrdm16 or shFATP1-injected mice treated with WA or DMSO (n = 5). EE per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (B) Indirect calorimetry was performed to quantify the motor activity of shGFP, shPrdm16 or shFATP1-injected mice treated with WA or DMSO during complete 24 hr light-dark cycles, the arrow indicates the time of WA or DMSO injection (n = 5). (C, D) VO₂ of shGFP, shPrdm16 or shFATP1-injected mice treated with WA or DMSO injection (n = 5). VO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. (E, F) VCO₂ of shGFP, shPrdm16 or shFATP1-injected mice treated with WA or DMSO (n = 5). VO₂ per whole animal is plotted against body weight. In all panels, lines show fitted mice treated with WA or DMSO (n = 5). VCO₂ per whole animal is plotted against body weight. In all panels, lines show fitted regressions. Values are mean \pm SEM. Significance was determined by one-way ANOVA with Tukey post hoc test. *p < 0.05; **p < 0.01.

Supplementary Figure 5. Correlation analysis between Prdm16, FATP1, Pgc1 α and D β H in human adipose tissue. ⁵³ Correlation analysis between Prdm16, FATP1, Pgc1 α and D β H in human subcutaneous (A-D) and visceral (E-H) adipose tissues (using GTEXv5 databases).

Supplementary Figure 6. Original full western blot images.

Primer	Forward Primer 5'-3'	Reverse Primer 5'-3'
Ucp1	ACTGCCACACCTCCAGTCATT	CTTTGCCTCACTCAGGATTGG
Prdm16	CAGCACGGTGAAGCCATTC	GCGTGCATCCGCTTGTG
FATP1	AGCCTGGTCAAGTTCTGTTCTGGA	AGAAGAGTCGATCATCCATGCCCT

Supplementary table 1: Primers used in the present study

Pgc1a	AGCCGTGACCACTGACAACGAG	GCTGCATGGTTCTGAGTGCTAAG
Pparα	GGGTACCACTACGGAGTTCACG	CAGACAGGCACTTGTGAAAACG
Ppary	GTGCCAGTTTCGATCCGTAGA	GGCCAGCATCGTGTAGATGA
Cox7a1	CAGCGTCATGGTCAGTCTGT	AGAAAACCGTGTGGCAGAGA
Cox8β	GAACCATGAAGCCAACGACT	GCGAAGTTCACAGTGGTTCC
Cited	ACTAGCTCCTCTGGATCGACA	GACCCAGTTTTGCATGGGC
Elovl3	TTCTCACGCGGGTTAAAAATGG	GAGCAACAGCTAGACGACCAC
Cpt1	TGGCATCATCACTGGTGTGTT	GTCTAGGGTCCGATTGATCTTTG
Cidea	TGCTCTTCTGTATCGCCCAGT	GCCGTGTTAAGGAATCTGCTG
Mcad	ATGACGGAGCAGCCAATGAT	TCGTCACCCTTCTTCTCTGCTT
Metrnl	CTGGAGCAGGGAGGCTTATTT	GGACAACAAAGTCACTGGTACAG
HSP70	TGGTGCTGACGAAGATGAAG	AGGTCGAAGATGAGCACGTT
Nrf1	CAGCAACCCTGATGGCACCGTGTC	GGCCTCTGATGCTTGCGTCGTCTG
Dio2	AGAGTGGAGGCGCATGCT	GGCATCTAGGAGGAAGCTGTTC
Adrb3	TTGTCCTGGTGTGGATCGTG	TTGGAGGCAAAGGAACAGCA
LepR	TGTTTTGGGACGATGTTCCA	AAAGATGCTCAAATGTTTCAGGC
JAK2	AGAAAGGGCGGAATAAGGGC	CTGCTCCAACTCACGAATCCT
Stat3	CACCTTGGATTGAGAGTCAAGAC	AGGAATCGGCTATATTGCTGGT
Stat5	CAGATGCAAGTGTTGTATGGGC	GCTGGCTCTCGATCCACTG
РІЗК	CGAGAGTGTCGTCACAGTGTC	TGTTCGCTTCCACAAACACAG
AKT	ATGAACGACGTAGCCATTGTG	TTGTAGCCAATAAAGGTGCCAT

mTOR	CAGTTCGCCAGTGGACTGAAG	GCTGGTCATAGAAGCGAGTAGAC
S6K1	CTGAGAAGGCCGATCCATCC	TGACCTTGCGTACCAGGAAGA
PDE3b	AAAGCGCAGCCGGTTACTAT	CCATATTGCGAGCTTCATTTAGC
AMPK	TCTGAGGGGCACCAAGAAAC	GTGGGTGTTGACGGAGAAGAG
FoxO1	CAATCTGTCCCTTCACAGCA	CTCCCTCTGGATTGAGCATC
Mchr1	ATGGATCTGCAAGCCTCGTTG	CCCGCCAATGTGAAATTATCCTG
Pomc	ATGCCGAGATTCTGCTACAGT	TCCAGCGAGAGGTCGAGTTT
Agrp	ATGCTGACTGCAATGTTGCTG	CAGACTTAGACCTGGGAACTCT
Npy	ATGCTAGGTAACAAGCGAATGG	TGTCGCAGAGCGGAGTAGTAT
ROCK1	GACTGGGGACAGTTTTGAGAC	ATCCAAATCATAAACCAGGGCAT
TRPC	TTCACTGAGACCTTTTTGACCG	TGGCACTCAACGAAGTCACTG
Sitr1	GCTGACGACTTCGACGACG	TCGGTCAACAGGAGGTTGTCT
MAGEL	AATGCCGCATGTTCCCATTAC	ATGGATCATCACGACACCAGG
MFN2	AGAACTGGACCCGGTTACCA	CACTTCGCTGATACCCCTGA
BDNF	TCATACTTCGGTTGCATGAAGG	AGACCTCTCGAACCTGCCC
Socs3	GAGTACCCCCAAGAGAGCTTACTA	CTCCTTAAAGTGGAGCATCATACTG
Gpr17	GCTTACTCTGAGCAATGCGGA	GTGATAAACCAACCGGGTAGG
PTEN	TGGATTCGACTTAGACTTGACCT	GCGGTGTCATAATGTCTCTCAG
GSK3b	ATGGCAGCAAGGTAACCACAG	TCTCGGTTCTTAAATCGCTTGTC
Gapdh	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA