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Hyperbolic relationship between insulin secretion and sensitivity 

The relationship between two variables x and y is said to be hyperbolic if 𝑥 × 𝑦 = 𝑐, where c is a constant. The x and 

y variables can be log-transformed (ln(𝑥 × 𝑦) = ln(𝑥) + ln(𝑦) = ln(𝑐)), and the hyperbolic relationship between 

these two variables can be re-expressed as linear model such that:  ln(𝑦) = ln(𝑐) − 1ln(𝑥), where the regression 

coefficient in the linear model of ln(𝑦) as a function of ln(𝑥) is 𝛽 = −1.1, 2  Note that β = -1 regardless of the units 

in which y and x are expressed and regardless of the base of logarithms used.  The hypothesis that the relationship 

between insulin secretion and insulin sensitivity is hyperbolic is usually tested by determining if the slope of a linear 

model of ln(insulin secretion) as a function of ln(insulin sensitivity) is not significantly different from -1 (i.e., the 

95% CI for the slope includes -1).1-4 

Reasons for using SMA regression to model relationships between insulin secretion and sensitivity 

We studied the relationship between insulin secretion and sensitivity by estimating ln(insulin secretion) as a function 

of ln(insulin sensitivity). The models provided by the SMA regression were chosen after comparing their fit with 

models from linear and orthogonal regression using standard error of the residuals and confidence intervals for 

intercepts and slopes, Supplementary Tables S1 and S2. One reason for not considering linear regression models in 

this case is that this method only accounts for variability in y, while orthogonal and SMA regression models account 

for variability in both x and y.5 Also, in our study, linear regression models had the highest standard error of the 

residuals in all cases, Supplementary Tables S1 and S2. Standard errors of the residuals were the same or slightly 

lower for orthogonal regression models when compared to those from SMA regression. However, SMA models 

were chosen because orthogonal regression is most useful when one is studying the relationship between two 

variables that are estimates of the same entity.5 Another reason for choosing SMA models was that, their confidence 

intervals are estimated more efficiently than those for orthogonal regression models, and the confidence intervals for 

SMA slopes tend to be exact or close to exact in most practical instances.6  

Generally, SMA and orthogonal regression models led to the same conclusions (same qualitative results). In the 

OGTT dataset, both SMA and orthogonal regression indicated that the slope for ln(CIR120) as a function of ln(ISI0) 

was essentially -1 in the whole dataset (SMA: (95% CI -0·999 to -0·908); orthogonal: (95% CI -0·996 to -0·686)), 

significantly different from -1 in NGR subjects only (SMA: (95% CI -0·948 to -0·854); orthogonal: (95% CI -0·869 

to -0·656)), and that it was not significantly different from -1 in the IGR subjects only (SMA: (95% CI -1·093 

to -0·918); orthogonal: (95% CI -1·180 to -0·853)). In the IV/CLAMP dataset, both approaches suggested that the 

slope for ln(AIR) as a function of ln(M) was significantly different from -1 in the whole dataset (SMA: (95% 

CI -2·442 to -2·027); orthogonal: (95% CI -12·550 to -5·454)), NGR subjects only (SMA: (95% CI -2·333 

to -1·898); orthogonal: (95% CI -6·745 to -3·701)) and IGR subjects only (SMA: (95% CI -4·146 to -2·803); 

orthogonal: (95% bootstrap CI -32·545 to -20·577)). In the OGTT dataset, both approaches indicated that the slope 

of line describing the relationship between ln(CIR120) and ln(ISI0) in NGR subjects was significantly different from 

the slope describing this relationship in IGR subjects (SMA: LRS=4·26, p=0·04; orthogonal: LRS=6·69, p=0·01).  

Conclusions from SMA and orthogonal regression models differed when testing whether BMI associated with the 

relationship between insulin secretion and sensitivity in the OGTTdataset. The test for common slopes in the SMA 

model indicated that the slopes for different categories of BMI (normal weight, overweight and obese) were 

significantly different (LRS=7·26, p=0·03), which was not the conclusion reached with the test for common slopes 

in the orthogonal regression model (suggested slopes were not significantly different; LRS=5·54, p=0·06). However, 

when plotting the slopes for both models the difference in slopes was more pronounced for the orthogonal regression 

model than for the SMA model (Supplementary Figure S1). This difference in results for the common slopes test is 

likely due to confidence intervals for orthogonal regression models being less efficient6 (wider) than those of the 

SMA models.  

Additionally, SMA regression models produced stable results for all datasets and their subsets (NGR, IGR, normal 

weight, overweight, obese). Meanwhile, orthogonal regression models provided unstable results (lower limit of CI 

higher than upper limit of CI) when fit using Warton’s R package7 for subjects in the IV/CLAMP dataset in the IGR, 

as well as overweight and obese subsets. We also fit orthogonal regression models for all subsets of the IV/CLAMP 

dataset using bootstrap estimation. For the subsets for which we obtained stable estimates using Warton’s R 

package, we obtained similar (almost the same) intercept and slope estimates with bootstrap estimation. For the 

subsets for which unstable estimates were obtained with Warton’s R package, we found that orthogonal regression 



models with bootstrap estimation had lower standard error of the residuals. However, for most subsets, the values of 

ln(AIR) obtained when fitting lines using orthogonal regression were way outside of range of the values from which 

the line was estimated in the extremes, which was not the case for lines obtained from linear and SMA regression 

models (Supplementary Figure S2).  

A hyperbolic relationship between insulin secretion and sensitivity implies that the relationship between these two 

variables is symmetric and that we should obtain the same line if we model ln(insulin secretion) as a function of 

ln(insulin sensitivity) or ln(insulin sensitivity) as a function of ln(insulin secretion), i.e. the slope of ln(insulin 

sensitivity) as a function of ln(insulin secretion) is also -1. Thus, we also modeled ln(ISI0 or M) as a function of 

ln(CIR120 or AIR) using linear, orthogonal and SMA regression, Supplementary Tables S1 and S2. In both datasets 

and for all their subsets, the slopes of these models obtained using orthogonal and SMA regression were the 

reciprocals (=1/slope) of the slopes of those obtained when modeling ln(CIR120 or AIR) as a function of ln(ISI0 or 

M). For example, for IGR subjects in the OGTT dataset, when modeling ln(CIR120) as a function of ln(ISI0) using 

SMA regression, the slope was –1·002 and when modeling ln(ISI0) as a function of ln(CIR120) the slope was -

0·998=
1

−1·002
. This showed that orthogonal and SMA regression provided the same line if we modeled ln(insulin 

secretion) as a function of ln(insulin sensitivity) or ln(insulin sensitivity) as a function of ln(insulin secretion). In all 

cases, results for testing the hypothesis of a hyperbolic relationship were the same when modeling ln(ISI0 or M) as a 

function of ln(CIR120 or AIR) than when modeling ln(CIR120 or AIR) as a function of ln(ISI0 or M). For example, for 

NGR subjects in the OGTT dataset, when modeling ln(CIR120) as a function of ln(ISI0) using SMA regression, the 

slope was not -1 (95% CI -0·948 to -0·854), which was also the case when modeling ln(ISI0) as a function of 

ln(CIR120) (95% CI -1·171 to -1·054). When we modeled ln(CIR120 or AIR) as a function of ln(ISI0 or M) using 

linear regression, we obtained different lines than when modeling ln(ISI0 or M) as a function of ln(CIR120 or AIR) 

(slopes were not reciprocal) for all subsets in both datasets. This highlighted another disadvantage of the linear 

regression models in our study, where we were interested in checking for a symmetric relationship.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S1. Estimated relationship between ln(CIR120) and ln(ISI0) in OGTT dataset using linear, orthogonal and SMA regression 

  ln(CIR120) as function of ln(ISI0) (Model of Interest) ln(ISI0) as function of ln(CIR120) 

  

Regression model 
Parameters  

S·E. Residuals Slope (95% CI) 
Slope is reciprocal to that of 

ln(CIR120) as function of ln(ISI0) Intercept (95% CI) Slope (95% CI) 

Glucose Tolerance Groups 

NGR 

Linear regression -4·206 (-4·290, -4·121) -0·337 (-0·384, -0·290) 0·546 -0·416 (-0·475, -0·358) No 

Orthogonal regression -4·906 (-5·086, -4·726) -0·757 (-0·869, -0·656) 0·487 -1·321 (-1·524, -1·150) Yes 

SMA regression -5·144 (-5·231, -5·057) -0·900 (-0·948, -0·854) 0·490 -1·111 (-1·171, -1·054) Yes 

IGR 

Linear regression -5·381 (-5·576, -5·186) -0·544 (-0·631, -0·456) 0·541 -0·542 (-0·629, -0·455) No 

Orthogonal regression -6·363 (-6·714, -6·012) -1·003 (-1·180, -0·853) 0·435 -0·997 (-1·172, -0·847) Yes 

SMA regression -6·360 (-6·558, -6·162) -1·002 (-1·093, -0·918) 0·435 -0·998 (-1·089, -0·915) Yes 

Body Mass Index Groups 

Normal weight 

Linear regression -4·274 (-4·456, -4·093) -0·419 (-0·564, -0·273) 0·666 -0·270 (-0·363, -0·176) No 

Orthogonal regression -5·877 (-6·607, -5·147) -1·856 (-2·763, -1·339) 0·500 -0·539 (-0·747, -0·362) Yes 

SMA regression -5·197 (-5·387, -5·006) -1·245 (-1·399, -1·109) 0·516 -0·803 (-0·902, -0·715) Yes 

Overweight 

Linear regression -4·264 (-4·449, -4·078) -0·262 (-0·375, -0·149) 0·618 -0·185 (-0·265, -1·05) No 

Orthogonal regression -7·066 (-8·455, -5·678) -2·071 (-3·509, -1·394) 0·498 -0·483 (-0·717, -0·285) Yes 

SMA regression -5·701 (-5·893, -5·510) -1·190 (-1·308, -1·082) 0·513 -0·840 (-0·924, -0·764) Yes 

Obese 

Linear regression -4·303 (-4·447, -4·158) -0·277 (-0·344, -0·209) 0·611 -0·244 (-0·304, -0·185) No 

Orthogonal regression -6·347 (-6·987, -5·707) -1·267 (-1·636, -0·995) 0·522 -0·789 (-1·005, -0·611) Yes 

SMA regression -5·928 (-6·076, -5·780) -1·064 (-1·134, -0·999) 0·527 -0·940 (-1·001, -0·882) Yes 

a Comparisons done with calculations using unrounded numbers 

 



Supplementary Table S2. Estimated relationship between ln(AIR) and ln(M) in IV/CLAMP dataset using linear, orthogonal and SMA regression 

 
 ln(AIR) as function of ln(M) (Model of Interest) ln(M) as a function of ln(AIR) 

  

Regression model 
Parameters  

S·E. Residuals Slope (95% CI) 

Slope is reciprocal to 

that of ln(AIR) as 

function of ln(M)a Intercept (95% CI) Slope (95% CI) 

Glucose Tolerance Groups 

NGR 

Linear regression 6·374 (6·073, 6·674) -0·747 (-0·965, -0·530) 0·585 -0·169 (-0·218, -0·120) No 

Orthogonal regression 

with Warton’s package 
11·836 (9·945, 13·727) -4·797 (-6·745, -3·701) 0·273 -0·208 (-0·270, -0·148) Yes 

Orthogonal regression 

with bootstrap 
11·858 (11·038, 12·993) -4·813 (-5·684, -4·159) 0·274 -0·208 (-0·240, -0·176) Yes 

SMA regression 8·204 (7·900, 8·508) -2·104 (-2·333, -1·898) 0·347 -0·475 (-0·527, -0·429) Yes 

IGR 

Linear regression 5·626 (4·857, 6·400) -0·421 (-1·092, 0·250) 0·716 -0·036 (-0·094, 0·022) No 

Orthogonal regression 

with Warton’s package 
33·607 (-11·736, 78·950) -25·252 (Unstable CI) 0·210 -0·040 (-0·103, 0·024) Yes 

Orthogonal regression 
with bootstrap 

33·597 (28·398, 41·769) -25·241 (-32·545, -20·577) 0·210 -0·040 (-0·049, -0·031) Yes 

SMA regression 8·993 (8·214, 9·772) -3·409 (-4·146, -2·803) 0·366 -0·293 (-0·357, -0·241) Yes 

Body Mass Index Groups 

Normal weight 

Linear regression 5·991 (4·980, 7·002) -0·641 (-1·228, -0·054) 0·625 -0·137 (-0·262, -0·012) No 

Orthogonal regression 

with Warton’s package 
14·928 (5·740, 24·116) -5·912 (-68·186, -3·013) 0·286 -0·169 (-0·332, -0·015) Yes 

Orthogonal regression 
with bootstrap 

14·918 (13·435, 17·116) -5·904 (-7·232, -5·011) 0·286 -0·169 (-0·180, -0·158) No (diff=0·01) b 

SMA regression 8·573 (7·554, 9·592) -2·164 (-2·830, -1·655) 0·373 -0·462 (-0·604, -0·353) Yes 

Overweight 

Linear regression 5·398 (4·782, 6·013) -0·124 (-0·546, 0·298) 0·534 -0·030 (-0·131, 0·071) No 

Orthogonal regression 

with Warton’s package 
41·892 (-82·628, 166·413) -25·546 (Unstable CI) 0·261 -0·039 (-0·175, 0·095) Yes 

Orthogonal regression 
with bootstrap 

41·913 (32·446, 60·661) -25·548 (-38·671, -18·934) 0·261 -0·039 (-0·050, -0·029) No (diff=0·024) b 

SMA regression 8·151 (7·527, 8·775) -2·042 (-2·508, -1·663) 0·362 -0·490 (-0·601, -0·399) Yes 

Obese 

Linear regression 5·624 (5·158, 6·090) -0·171 (-0·563, 0·222) 0·66 -0·016 (-0·052, 0·020) No 

Orthogonal regression 

with Warton’s package 
72·909 (-82·271, 228·088) -57·639 (Unstable CI) 0·201 -0·017 (-0·057, 0·023) Yes 

Orthogonal regression 

with bootstrap 
72·647 (55·087, 110·231) -57·389 (-89·532, -42·396) 0·201 -0·017 (-0·022, -0·012) No (diff=0·105) b 

SMA regression 9·277 (8·805, 9·749) -3·291 (-3·707, -2·922) 0·355 -0·304 (-0·342, -0·269) Yes 

aComparisons done with calculations using unrounded numbers. bBootstrap distribution for ln(AIR) as function of ln(M) not symmetric, bootstrap distribution for ln(M) as function of ln(AIR) symmetric  



Supplementary Figure S1. Visual test for common slopes between different BMI categories for SMA and 

orthogonal regression in OGTT dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure S2. Lines estimated for NGR, IGR, normal weight, overweight, and obese subjects in 

IV/CLAMP dataset using linear regression, SMA regression, and orthogonal regression with bootstrap 

estimation 

 



References 

1. Kahn SE, Prigeon RL, Mcculloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the 

Relationship between Insulin Sensitivity and Beta-Cell Function in Human-Subjects - Evidence for a Hyperbolic 

Function. Diabetes. 1993;42(11):1663-72. 

2. Kim SH, Silvers A, Viren J, Reaven GM. Relationship between insulin sensitivity and insulin secretion 

rate: not necessarily hyperbolic. Diabetic Med. 2016;33(7):961-7. 

3. Utzschneider KM, Prigeon RL, Carr DB, Hull RL, Tong J, Shofer JB, et al. Impact of differences in fasting 

glucose and glucose tolerance on the hyperbolic relations between insulin sensitivity and insulin responses. Diabetes 

Care. 2006;29(2):356-62. 

4. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, et al. Oral disposition index 

predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 

2009;32(2):335-41. 

5. Patzer ABC, Bauer H, Chang C, Bolte J, Sulzle D. Revisiting the Scale-Invariant, Two-Dimensional Linear 

Regression Method. J Chem Educ. 2018;95(6):978-84. 

6. Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry. Biol Rev Camb 

Philos Soc. 2006;81(2):259-91. 

7. Warton DI, Duursma RA, Falster DS, Taskinen S. smatr 3-an R package for estimation and inference about 

allometric lines. Methods Ecol Evol. 2012;3(2):257-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S3: Classifications of IFG, IGT, and NGR by WHO criteria in the OGTT dataset 

 2-hr PG <140 140≤ 2-hr PG<200 

FPG<110 NGR=1207 IGT=271 

110≤FPG<126 IFG=29 IGT=59 

 

Supplementary Table S4: Classifications of IFG, IGT, and NGR by WHO criteria in the IV/CLAMP dataset 

 2-hr PG <140 140≤ 2-hr PG<200 

FPG<110 NGR=318 IGT=96 

110≤FPG<126 IFG=2 IGT=4 

 

Supplementary Table S5: Correlations between ln(DI) with distance away from line, and between ln(BCDI) 

with distance along the line 

Group   

OGTT dataset IV/CLAMP dataset 

Distance away from line Distance along the line Distance away from line Distance along the line 

Whole 
ln(DI) 0·999 (p<0·0001) ·· 0·900 (p<0·0001) ·· 

ln(BCDI) ·· 1·000 (p<0·0001) ·· 0·982 (p<0·0001) 

NGR 
ln(DI) 0·997 (p<0·0001) ·· 0·889 (p<0·0001) ·· 

ln(BCDI) ·· 0·999 (p<0·0001) ·· 0·986 (p<0·0001) 

IGR 
ln(DI) 1·000 (p<0·0001) ·· 0·850 (p<0·0001) ·· 

ln(BCDI) ·· 1·000 (p<0·0001) ·· 0·982 (p<0·0001) 

Note: Correlations in NGR and IGR subjects only are calculated based on distances away from and along lines 

calculated in NGR and IGR subjects separately. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S6: Differences in AUC between models with baseline covariates sex, age, and fraction 

of American Indian heritage compared in the OGTT dataset for all subjects  

Models AUC 

Model 1 Model 2 Difference (SE) P-value 

ln(DI) ln(CIR120) 0·099 (0·010) <0·0001 

ln(DI) ln(ISI0) 0·022 (0·010) 0·02 

ln(CIR120) & ln(ISI0) ln(DI) 0·008 (0·004) 0·08 

ln(DI) Distance away from the line 0·002 (0·001) <0·0001 

ln(DI) Distance along the line 0·094 (0·014) <0·0001 

Distance away from the line and distance along the line ln(DI) 0·008 (0·004) 0·08 

ln(CIR120) ln(ISI0) -0·077 (0·015) <0·0001 

ln(CIR120) & ln(ISI0) ln(CIR120) 0·106 (0·012) <0·0001 

ln(CIR120) Distance away from the line -0·097 (0·010) <0·0001 

ln(CIR120) Distance along the line -0·005 (0·016) 0·76 

Distance away from the line and distance along the line ln(CIR120) 0·106 (0·012) <0·0001 

ln(CIR120) & ln(ISI0) ln(ISI0) 0·030 (0·006) <0·0001 

ln(ISI0) Distance away from the line -0·020 (0·010) 0·05 

ln(ISI0) Distance along the line 0·072 (0·007) <0·0001 

Distance away from the line and distance along the line ln(ISI0) 0·030 (0·006) <0·0001 

ln(CIR120) & ln(ISI0) Distance away from the line 0·010 (0·005) 0·04 

ln(CIR120) & ln(ISI0) Distance along the line 0·102 (0·011) <0·0001 

ln(CIR120) & ln(ISI0) Distances 0·000 (0·000) >0·99 

Distance away from the line  Distance along the line 0·092 (0·014) <0·0001 

Distance away from the line and distance along the line Distance away from the line 0·010 (0·005) 0·04 

Distance away from the line and distance along the line Distance along the line 0·102 (0·012) <0·0001 

Note: differences are calculated as Model1-Model2. Model with higher AUC is bolded. AUC for models included in 

Table 3. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S7: Differences in AUC between models with baseline covariates sex, age, and fraction 

of American Indian heritage compared in the OGTT dataset for NGR subjects only 

Models AUC 

Model 1 Model 2 Difference (SE) P-value 

ln(DI) ln(CIR120) 0·083 (0·020) <0·0001 

ln(DI) ln(ISI0) -0·014 (0·012) 0·23 

ln(CIR120) & ln(ISI0) ln(DI) 0·020 (0·009) 0·04 

ln(DI) Distance away from the line 0·006 (0·001) <0·0001 

ln(DI) Distance along the line 0·021 (0·017) 0·21 

Distance away from the line and distance along the line ln(DI) 0·020 (0·009) 0·04 

ln(CIR120) ln(ISI0) -0·098 (0·015) <0·0001 

ln(CIR120) & ln(ISI0) ln(CIR120) 0·103 (0·016) <0·0001 

ln(CIR120) Distance away from the line -0·078 (0·020) <0·001 

ln(CIR120) Distance along the line -0·063 (0·011) <0·0001 

Distance away from the line and distance along the line ln(CIR120) 0·103 (0·016) <0·0001 

ln(CIR120) & ln(ISI0) ln(ISI0) 0·005 (0·003) 0·08 

ln(ISI0) Distance away from the line 0·020 (0·013) 0·12 

ln(ISI0) Distance along the line 0·035 (0·007) <0·0001 

Distance away from the line and distance along the line ln(ISI0) 0·005 (0·003) 0·08 

ln(CIR120) & ln(ISI0) Distance away from the line 0·025 (0·011) 0·02 

ln(CIR120) & ln(ISI0) Distance along the line 0·040 (0·009) <0·0001 

Distance away from the line  Distance along the line 0·015 (0·018) 0·39 

Distance away from the line and distance along the line Distance away from the line 0·025 (0·011) 0·02 

Distance away from the line and distance along the line Distance along the line 0·040 (0·009) <0·0001 

Note: differences are calculated as Model1-Model2. Model with higher AUC is bolded. AUC for models included in 

Table 3. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S8: Differences in AUC between models with baseline covariates sex, age, and fraction 

of American Indian heritage compared in the OGTT dataset for IGR subjects only 

Models AUC 

Model 1 Model 2 Difference (SE) P-value 

ln(DI) ln(CIR120) 0·080 (0·024) 0·001 

ln(DI) ln(ISI0) 0·061 (0·023) 0·01 

ln(CIR120) & ln(ISI0) ln(DI) -0·003 (0·007) 0·67 

ln(DI) Distance away from the line 0·000 (0·0002) >0·99 

ln(DI) Distance along the line 0·117 (0·028) <0·0001 

Distance away from the line and distance along the line ln(DI) -0·003 (0·007) 0·67 

ln(CIR120) ln(ISI0) -0·019 (0·030) 0·54 

ln(CIR120) & ln(ISI0) ln(CIR120) 0·077 (0·026) 0·003 

ln(CIR120) Distance away from the line -0·080 (0·024) 0·001 

ln(CIR120) Distance along the line 0·037 (0·028) 0·18 

Distance away from the line and distance along the line ln(CIR120) 0·077 (0·026) 0·003 

ln(CIR120) & ln(ISI0) ln(ISI0) 0·058 (0·018) 0·001 

ln(ISI0) Distance away from the line -0·061 (0·023) 0·01 

ln(ISI0) Distance along the line 0·055 (0·011) <0·0001 

Distance away from the line and distance along the line ln(ISI0) 0·058 (0·018) 0·001 

ln(CIR120) & ln(ISI0) Distance away from the line -0·003 (0·006) 0·67 

ln(CIR120) & ln(ISI0) Distance along the line 0·114 (0·025) <0·0001 

Distance away from the line Distance along the line 0·117 (0·028) <0·0001 

Distance away from the line and distance along the line Distance away from the line -0·003 (0·006) 0·67 

Distance away from the line and distance along the line Distance along the line 0·114 (0·025) <0·0001 

Note: differences are calculated as Model1-Model2. Model with higher AUC is bolded. AUC for models included in 

Table 3. 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S9: Differences in AUC between models with baseline covariates sex, age, and fraction 

of American Indian heritage compared in the IV/CLAMP dataset for all subjects 

Models AUC 

Model 1 Model 2 Difference (SE) P-value 

ln(DI) ln(AIR) 0·054 (0·012) <0·0001 

ln(DI) ln(M) -0·036 (0·028) 0·21 

ln(AIR) & ln(M) ln(DI) 0·065 (0·019) 0·001 

ln(DI) Distance away from the line -0·043 (0·011) <0·0001 

ln(DI) Distance along the line 0·076 (0·019) <0·0001 

Distance away from the line and distance along the line ln(DI) 0·065 (0·019) 0·001 

ln(AIR)    ln(M) -0·090 (0·032) 0·01 

ln(AIR)&ln(M) ln(AIR) 0·119 (0·026) <0·0001 

ln(AIR) Distance away from the line -0·098 (0·020) <0·0001 

ln(AIR) Distance along the line 0·022 (0·009) 0·01 

Distance away from the line and distance along the line ln(AIR) 0·119 (0·026) <0·0001 

ln(AIR) & ln(M) ln(M) 0·030 (0·014) 0·03 

ln(M) Distance away from the line -0·008 (0·021) 0·71 

ln(M) Distance along the line 0·111 (0·032) 0·001 

Distance away from the line and distance along the line ln(M) 0·030 (0·014) 0·03 

ln(AIR) & ln(M) Distance away from the line 0·022 (0·010) 0·02 

ln(AIR) & ln(M) Distance along the line 0·141 (0·029) <0·0001 

Distance away from the line Distance along the line 0·119 (0·025) <0·0001 

Distance away from the line and distance along the line Distance away from the line 0·022 (0·010) 0·02 

Distance away from the line and distance along the line Distance along the line 0·141 (0·029) <0·0001 

Note: differences are calculated as Model1-Model2. Model with higher AUC is bolded. AUC for models included in 

Table 4. 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S10: Differences in AUC between models with baseline covariates sex, age, and fraction 

of American Indian heritage compared in the IV/CLAMP dataset for NGR subjects only 

Models AUC 

Model 1 Model 2 Difference (SE) P-value 

ln(DI) ln(AIR) 0·056 (0·018) 0·002 

ln(DI) ln(M) -0·056 (0·040) 0·16 

ln(AIR) & ln(M) ln(DI) 0·072 (0·029) 0·01 

ln(DI) Distance away from the line -0·050 (0·016) 0·001 

ln(DI) Distance along the line 0·070 (0·029) 0·02 

Distance away from the line and distance along the line ln(DI) 0·072 (0·028) 0·01 

ln(AIR)    ln(M) -0·112 (0·046) 0·02 

ln(AIR)&ln(M) ln(AIR) 0·128 (0·039) 0·001 

ln(AIR) Distance away from the line -0·106 (0·029) 0·0003 

ln(AIR) Distance along the line 0·015 (0·015) 0·33 

Distance away from the line and distance along the line ln(AIR) 0·128 (0·039) 0·001 

ln(AIR)&ln(M) ln(M) 0·016 (0·017) 0·34 

ln(M) Distance away from the line 0·006 (0·029) 0·84 

ln(M) Distance along the line 0·126 (0·046) 0·01 

Distance away from the line and distance along the line ln(M) 0·016 (0·017) 0·34 

ln(AIR) & ln(M) Distance away from the line 0·022 (0·015) 0·13 

ln(AIR) & ln(M) Distance along the line 0·142 (0·042) 0·001 

Distance away from the line Distance along the line 0·120 (0·036) 0·001 

Distance away from the line and distance along the line Distance away from the line 0·022 (0·015) 0·13 

Distance away from the line and distance along the line Distance along the line 0·142 (0·042) 0·001 

Note: differences are calculated as Model1-Model2. Model with higher AUC is bolded. AUC for models included in 

Table 4. 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table S11: Differences in AUC between models with baseline covariates sex, age, and fraction 

of American Indian heritage compared in the IV/CLAMP dataset for IGR subjects only 

Models AUC 

Model 1 Model 2 Difference (SE) P-value 

ln(DI) ln(AIR) 0·028 (0·014) 0·05 

ln(DI) ln(M) 0·034 (0·048) 0·48 

ln(AIR) & ln(M) ln(DI) 0·023 (0·024) 0·34 

ln(DI) Distance away from the line -0·024 (0·023) 0·30 

ln(DI) Distance along the line 0·036 (0·018) 0·04 

Distance away from the line and distance along the line ln(DI) 0·023 (0·024) 0·34 

ln(AIR)    ln(M) 0·007 (0·052) 0·90 

ln(AIR)&ln(M) ln(AIR) 0·050 (0·033) 0·12 

ln(AIR) Distance away from the line -0·052 (0·032) 0·11 

ln(AIR) Distance along the line 0·009 (0·006) 0·18 

Distance away from the line and distance along the line ln(AIR) 0·050 (0·033) 0·12 

ln(AIR)&ln(M) ln(M) 0·057 (0·033) 0·09 

ln(M) Distance away from the line -0·058 (0·034) 0·09 

ln(M) Distance along the line 0·002 (0·054) 0·97 

Distance away from the line and distance along the line ln(M) 0·057 (0·033) 0·09 

ln(AIR)&ln(M) Distance away from the line -0·001 (0·003) 0·61 

ln(AIR)&ln(M) Distance along the line 0·059 (0·036) 0·10 

Distance away from the line Distance along the line 0·060 (0·035) 0·09 

Distance away from the line and distance along the line Distance away from the line -0·0001 (0·003) 0·61 

Distance away from the line and distance along the line Distance along the line 0·059 (0·036) 0·10 

Note: differences are calculated as Model1-Model2. Model with higher AUC is bolded. AUC for models included in 

Table 4. 

 

 

 

 

 

 

 

 

 

 


