#### **Supplemental Material**

Sharma A, Zheng Y, Ezekowitz JA, et al. Cluster analysis of cardiovascular phenotypes in patients with type 2 diabetes and established atherosclerotic cardiovascular disease: a potential approach to precision medicine.

Supplemental Table 1. Observed Clinical Outcomes by Cluster in TECOS

Supplemental Table 2. Baseline Characteristics by Cluster in EXSCEL

Supplemental Table 3. Baseline Glucose-Lowering and Cardiac-Related Medication Use by Cluster in EXSCEL

Supplemental Table 4. Observed Clinical Outcomes by Cluster in the EXSCEL Trial

Supplemental Figure 1. Association Between Cluster and Individual Cardiovascular Clinical Outcomes

Supplemental Figure 2. Interaction Between Study Treatment and Cluster on Clinical Outcomes

Supplemental Appendix 1. Variable Cluster Analysis in TECOS

Supplemental Appendix 2. Patient Cluster Analysis in TECOS

Supplemental Appendix 3. 5-Cluster Model Cluster Analysis in TECOS

|                                                                                                                                            | Cl         | uster I                 | Cluster II Cluster III |                         | ster III   | Cluster IV              |            |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|------------------------|-------------------------|------------|-------------------------|------------|------------------------|
| Ν                                                                                                                                          | 6001       | (40.9%)                 | 3490                   | (23.7%)                 | 2672       | (18.2%)                 | 2508 (     | 17.1%)                 |
|                                                                                                                                            | n (%)      | Events/100 pt-<br>years | n (%)                  | Events/100 pt-<br>years | n (%)      | Events/100 pt-<br>years | n (%)      | Events/100<br>pt-years |
| Primary composite CV outcome: CV<br>death, nonfatal MI, nonfatal stroke,<br>or hospitalization for unstable angina                         | 695 (11.6) | 4.13                    | 299 (8.6)              | 2.89                    | 274 (10.3) | 3.75                    | 422 (16.8) | 6.38                   |
| Secondary composite CV outcome:<br>CV death, nonfatal MI, or nonfatal<br>stroke                                                            | 594 (9.9)  | 3.49                    | 265 (7.6)              | 2.55                    | 253 (9.5)  | 3.44                    | 379 (15.1) | 5.67                   |
| CV death                                                                                                                                   | 215 (3.6)  | 1.19                    | 161 (4.6)              | 1.48                    | 129 (4.8)  | 1.66                    | 241 (9.6)  | 3.34                   |
| Fatal or non-fatal MI                                                                                                                      | 345 (5.7)  | 2                       | 78 (2.2)               | 0.74                    | 69 (2.6)   | 0.92                    | 124 (4.9)  | 1.82                   |
| Fatal or non-fatal stroke                                                                                                                  | 128 (2.1)  | 0.73                    | 51 (1.5)               | 0.48                    | 90 (3.4)   | 1.21                    | 92 (3.7)   | 1.34                   |
| Hospitalization for unstable angina                                                                                                        | 124 (2.1)  | 0.71                    | 42 (1.2)               | 0.4                     | 25 (0.9)   | 0.33                    | 54 (2.2)   | 0.78                   |
| All-cause mortality                                                                                                                        | 347 (5.8)  | 1.91                    | 214 (6.1)              | 1.96                    | 191 (7.1)  | 2.46                    | 332 (13.2) | 4.6                    |
| Hospitalization for HF                                                                                                                     | 173 (2.9)  | 0.99                    | 49 (1.4)               | 0.46                    | 55 (2.1)   | 0.73                    | 180 (7.2)  | 2.67                   |
| Composite of cardiovascular death,<br>non-fatal MI, non-fatal stroke,<br>hospitalization for unstable angina,<br>or hospitalization for HF | 787 (13.1) | 4.72                    | 324 (9.3)              | 3.15                    | 308 (11.5) | 4.24                    | 516 (20.6) | 8.05                   |
| Other CV death (besides fatal MI or<br>fatal stroke) or hospitalization for<br>HF                                                          | 337 (5.6)  | 1.88                    | 192 (5.5)              | 1.77                    | 169 (6.3)  | 2.19                    | 345 (13.8) | 6.38                   |

### Supplemental Table 1. Observed Clinical Outcomes by Cluster in TECOS

CV: Cardiovascular; HF: heart failure; MI: myocardial infarction

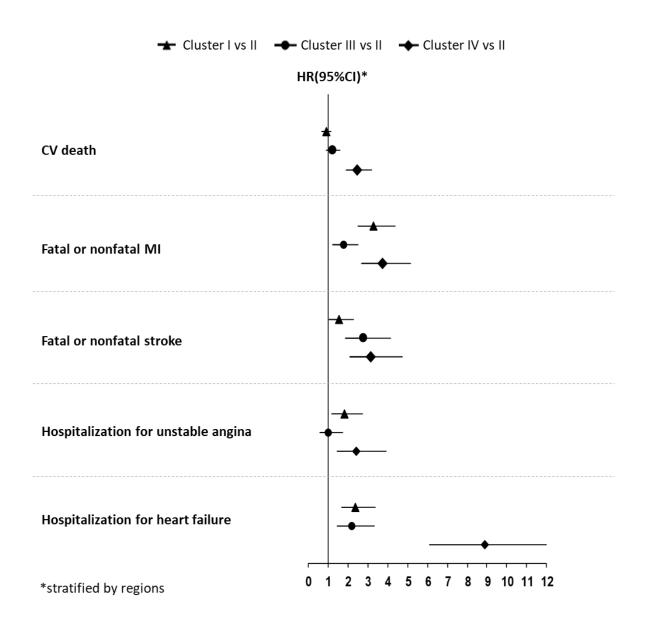
|                                           | Cluster I      | Cluster II     | Cluster III    | Cluster IV     |
|-------------------------------------------|----------------|----------------|----------------|----------------|
| Ν                                         | 7727           | 4413           | 599            | 2013           |
| Age (years) <sup>a</sup>                  | 62.5 (9.3)     | 60.2 (9.9)     | 60.5 (8.4)     | 63.6 (8.5)     |
| Women                                     | 2643 (34.2)    | 1979 (44.8)    | 258 (43.1)     | 723 (35.9)     |
| Race                                      |                |                |                |                |
| White                                     | 7655 (99.1)    | 1228 (27.8)    | 509 (85.0)     | 1783 (88.6)    |
| Black                                     | 9 (0.1)        | 773 (17.5)     | 25 (4.2)       | 71 (3.5)       |
| Asian                                     | 12 (0.2)       | 1318 (29.9)    | 52 (8.7)       | 70 (3.5)       |
| Other                                     | 46 (0.6)       | 1094(24.8)     | 13 (2.1)       | 89 (4.4)       |
| Region                                    |                |                |                |                |
| Asia Pacific and Other                    | 303 (3.9)      | 1103 (25.0)    | 55 (9.2)       | 68 (3.4)       |
| Eastern Europe                            | 2562 (33.2)    | 26 (0.6)       | 273 (45.6)     | 1154 (57.3)    |
| Latin America                             | 173 (2.2)      | 2260 (51.2)    | 80 (13.4)      | 214 (10.6)     |
| North America                             | 2509 (32.5)    | 801 (18.2)     | 55 (9.2)       | 343 (17.0)     |
| Western Europe                            | 2180 (28.2)    | 223 (5.1)      | 136 (22.7)     | 234 (11.6)     |
| Ethnicity                                 |                |                |                |                |
| Hispanic/Latino                           | 57 (0.7)       | 2643 (59.9)    | 82 (13.7)      | 244 (12.1)     |
| Duration of diabetes (years) <sup>b</sup> | 13.3 (8.2)     | 12.9 (8.3)     | 11.8 (7.2)     | 13.2 (8.6)     |
| $HbA_{1c}$ (%)                            | 8.0 (0.9)      | 8.2 (1.0)      | 8.3 (0.9)      | 8.2 (1.0)      |
| HbA <sub>1c</sub> (mmol/mol)              | 64.4 (10.2)    | 66.1 (10.8)    | 67.1 (10.1)    | 65.8 (10.6)    |
| Body mass index (kg/m <sup>2</sup> )      | 33.8 (6.2)     | 30.0 (5.9)     | 34.3 (6.3)     | 33.6 (6.4)     |
| Systolic blood pressure (mmHg)            | 135.8 (16.2)   | 135.0 (18.4)   | 136.7 (15.7)   | 135.0 (16.1)   |
| Diastolic blood pressure (mmHg)           | 77.8 (10.3)    | 78.4 (10.2)    | 79.4 (9.8)     | 78.4 (10.5)    |
| $eGFR (mL/min/1.73 m^2)^c$                | 78.8 (23.4)    | 79.6 (25.4)    | 82.3 (24.3)    | 73.1 (23.4)    |
| Urinary albumin:creatinine ratio (g/mol)  | 1.4 (0.5, 4.7) | 2.2 (0.5, 7.9) | 1.7 (0.4, 6.0) | 1.8 (0.0, 7.0) |
| LDL-cholesterol (mmol/L)                  | 2.4 (1.7)      | 2.5 (1.1)      | 2.7 (1.0)      | 2.5 (1.1)      |
| HDL-cholesterol (mmol/L)                  | 1.1 (0.8)      | 1.1 (0.4)      | 1.1 (0.3)      | 1.1 (0.3)      |
| Triglycerides (mmol/L)                    | 2.3 (5.1)      | 2.1 (1.4)      | 2.3 (1.3)      | 2.2 (1.4)      |
| Triglycerides (mg/dL)                     | 204(452)       | 186(124)       | 204(115)       | 195(124)       |
| Prior Myocardial infarction               | 2302 (29.8)    | 1147 (26.0)    | 142 (23.7)     | 1088 (54.0)    |
| Prior $\geq$ 50% coronary stenosis        | 2635 (34.1)    | 1173 (26.6)    | 130 (21.8)     | 854 (42.4)     |
| Prior PCI                                 | 2433 (31.5)    | 1130 (25.6)    | 115 (19.2)     | 715 (35.5)     |
| Prior CABG                                | 1344 (17.4)    | 509 (11.5)     | 66 (11.0)      | 447 (22.2)     |
| Prior cerebrovascular disease             | 1493 (19.3)    | 640 (14.5)     | 129 (21.6)     | 452 (22.5)     |
| Prior peripheral arterial disease         | 672 (8.7)      | 181 (4.1)      | 98 (16.4)      | 258 (12.8)     |
| Prior heart failure                       | 158 (2.0)      | 32 (0.7)       | 186 (31.1)     | 2013 (100.0)   |

### Supplemental Table 2. Baseline Characteristics by Cluster in EXSCEL

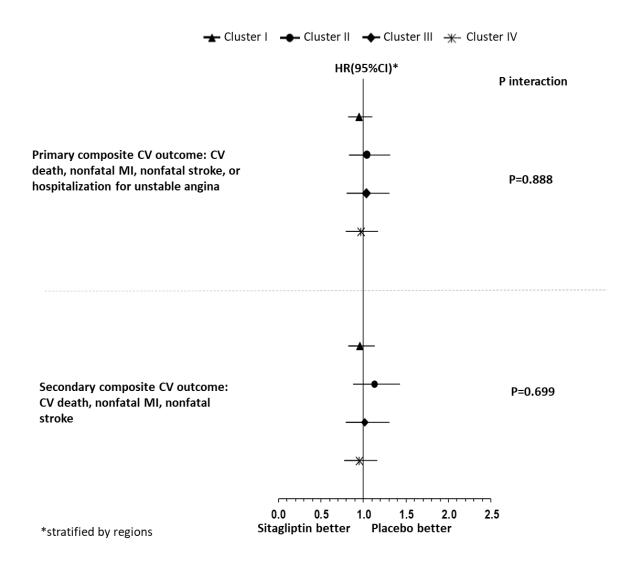
| NYHA class 3 or higher | 101 (63.9)  | 31 (96.9)   | 24 (12.9)  | 160 (7.9)  |
|------------------------|-------------|-------------|------------|------------|
| Current smoker         | 1010 (13.1) | 444 (10.1)  | 72 (12.0)  | 195 (9.7)  |
| Diabetic neuropathy    | 2409 (31.2) | 1165 (26.4) | 301 (50.3) | 839 (41.7) |
| Retinopathy            | 1275 (16.5) | 554 (12.6)  | 144 (24.1) | 543 (27.0) |

Abbreviations: CABG, coronary artery bypass graft; eGFR, estimated glomerular filtration rate; HbA<sub>1c</sub>, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PCI, percutaneous coronary intervention.

|                                 | Cluster I   | Cluster II  | Cluster III | Cluster IV  |
|---------------------------------|-------------|-------------|-------------|-------------|
| N                               | 7727        | 4413        | 599         | 2013        |
| Metformin                       | 5903 (76.4) | 3505 (79.4) | 468 (78.1)  | 1418 (70.4) |
| Sulfonylurea                    | 2626 (34.0) | 1845 (41.8) | 201 (33.6)  | 729 (36.2)  |
| Biguanides                      | 5904 (76.4) | 3505 (79.4) | 468 (78.1)  | 1418 (70.4) |
| Thiazolidinedione               | 369 (4.8)   | 156 (3.5)   | 18 (3.0)    | 36 (1.8)    |
| Insulin                         | 3577 (46.3) | 1960 (44.4) | 307 (51.3)  | 992 (49.3)  |
| Aspirin                         | 4910 (63.5) | 2597 (58.8) | 336 (56.1)  | 1537 (76.4) |
| Beta blocker                    | 4495 (58.2) | 1857 (42.1) | 325 (54.3)  | 1534 (76.2) |
| ACE inhibitor or ARB            | 6143 (79.5) | 3073 (69.6) | 477 (79.6)  | 1705 (84.7) |
| Calcium channel blocker         | 2523 (32.7) | 1290 (29.2) | 232 (38.7)  | 665 (33.0)  |
| Diuretic                        | 3532 (45.7) | 1351 (30.6) | 323 (53.9)  | 1237 (61.5) |
| Statin                          | 5952 (77.0) | 2892 (65.5) | 394 (65.8)  | 1607 (79.8) |
| Other lipid-lowering medication | 6234 (80.7) | 3080 (69.8) | 415 (69.3)  | 1641 (81.5) |


#### Supplemental Table 3. Baseline Glucose-Lowering and Cardiac-Related Medication Use by Cluster in EXSCEL

Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker.


|                                             | CI         | uster I                 | Cluster II |                         | Cluster III |                         | Cluster IV |                         |  |
|---------------------------------------------|------------|-------------------------|------------|-------------------------|-------------|-------------------------|------------|-------------------------|--|
| Ν                                           | ,          | 7727                    |            | 4413                    |             | 599                     |            | 2013                    |  |
|                                             | n (%)      | Events/100 pt-<br>years | n (%)      | Events/100 pt-<br>years | n (%)       | Events/100 pt-<br>years | n (%)      | Events/100 pt-<br>years |  |
| MACE (CVD/MI/stroke)                        | 985 (12.7) | 3.93                    | 331 (7.5)  | 2.63                    | 64 (10.7)   | 3.45                    | 364 (18.1) | 6.10                    |  |
| Fatal or non-fatal MI                       | 606 (7.8)  | 2.39                    | 161 (3.6)  | 1.27                    | 28 (4.7)    | 1.49                    | 181 (9.0)  | 3.00                    |  |
| CV death                                    | 347 (4.5)  | 1.25                    | 149 (3.4)  | 1.10                    | 31 (5.2)    | 1.56                    | 196 (9.7)  | 3.01                    |  |
| Hospitalization for acute coronary syndrome | 700 (9.1)  | 2.79                    | 223 (5.1)  | 1.77                    | 37 (6.2)    | 1.98                    | 212 (10.5) | 3.55                    |  |
| All-cause death                             | 544 (7.0)  | 1.96                    | 225 (5.1)  | 1.66                    | 54 (9.0)    | 2.73                    | 268 (13.3) | 4.11                    |  |
| Fatal stroke                                | 32 (0.4)   | 0.12                    | 6 (0.1)    | 0.05                    | 2 (0.3)     | 0.10                    | 13 (0.6)   | 0.21                    |  |
| Fatal MI                                    | 17 (0.2)   | 0.06                    | 3 (0.1)    | 0.02                    | 3 (0.5)     | 0.16                    | 10 (0.5)   | 0.16                    |  |
| Hospitalization for HF                      | 242 (3.1)  | 0.93                    | 55 (1.2)   | 0.43                    | 18 (3.0)    | 0.95                    | 135 (6.7)  | 2.20                    |  |
| Hypoglycemia requiring assistance           | 202 (2.6)  | 0.72                    | 162 (3.7)  | 1.18                    | 20 (3.3)    | 1.00                    | 82 (4.1)   | 1.25                    |  |

### Supplemental Table 4. Observed Clinical Outcomes by Cluster in the EXSCEL Trial

## Supplemental Figure 1. Association Between Cluster and Individual Cardiovascular Clinical Outcomes



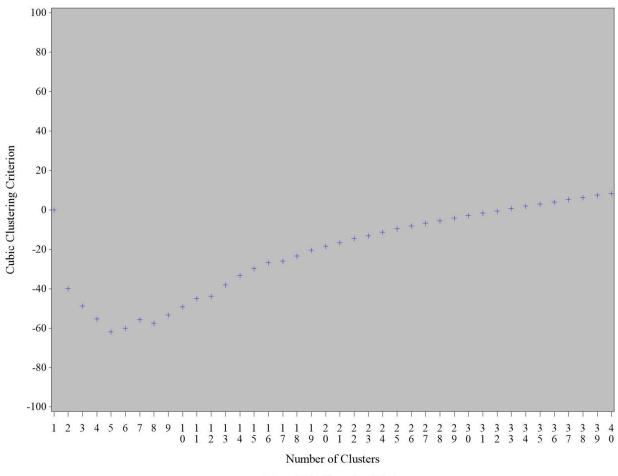
# Supplemental Figure 2. Interaction Between Study Treatment and Cluster on Clinical Outcomes



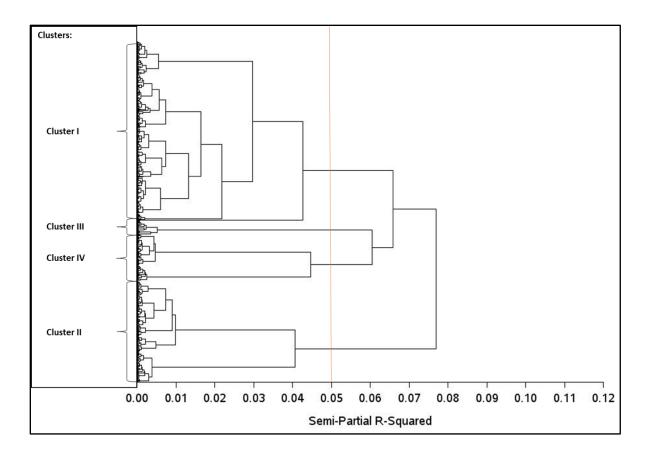
#### Supplemental Appendix 1. Variable Cluster Analysis in TECOS

Variable clustering was done for continuous and categorical variables separately. There were 14 continuous variables and 26 categorical variables considered at the beginning of analysis (see table below for details). Using SAS PROC VARCLUS, variables are aggregated into several dimensions by maximizing correlation within dimensions and minimizing correlations between dimensions. Second eigenvalue less than 1 of each dimension during each iteration was used to stop splitting dimensions. For continuous variables, 4 dimensions (clusters) were eventually identified. For categorical variables, 10 clusters were determined. Interpretation of variable dimension reduction is not critical in our analysis especially for binary variables because our goal is to use lower dimension of variables to best describe the data, to create a summary score for each variable cluster and for each patient. Then the summary score was used for the next analysis: patient clustering. The same 14 continuous variables and 26 categorical variables were selected for validation analysis in EXSCEL.

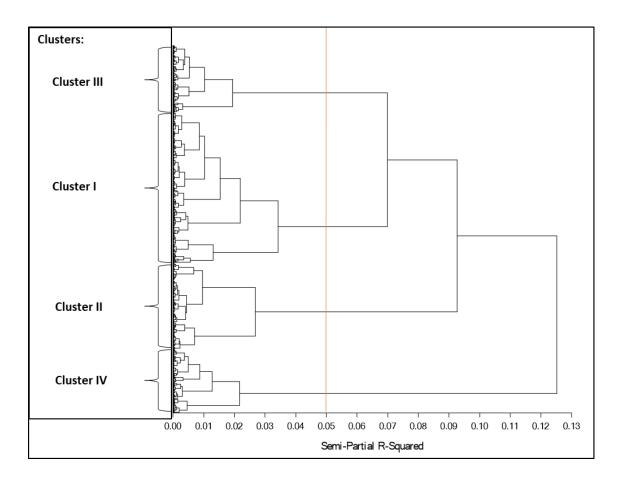
| Continuous  | age, BMI, weight, systolic BP at baseline, diastolic BP at baseline,      |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------|--|--|--|--|--|
| variables   | heart rate, HbA1c, hemoglobin, HDL cholesterol, triglycerides, log-       |  |  |  |  |  |
|             | transformed UACR, LDL cholesterol, duration of diabetes, and eGFR         |  |  |  |  |  |
| Categorical | sex, Hispanic or Latino ethnicity, race, NYHA class, prior coronary       |  |  |  |  |  |
| variables   | artery disease, prior MI, prior percutaneous coronary intervention, prior |  |  |  |  |  |
|             | peripheral arterial disease, prior coronary artery bypass graft prior     |  |  |  |  |  |
|             | cerebrovascular disease, heart failure, chronic obstructive pulmonary     |  |  |  |  |  |
|             | disease; chronic liver disease, cancer, hypertension, alcohol abuse,      |  |  |  |  |  |
|             | complication of amputation, foot ulcer, retinopathy, blindness, diabetic  |  |  |  |  |  |
|             | neuropathy, currently smoking, depression.                                |  |  |  |  |  |


#### Supplemental Appendix 2. Patient Cluster Analysis in TECOS

The analysis started with each patient as a cluster and then iteratively merged clusters together until all patients were merged into a single cluster according to the distance between clusters. Ward's minimum variance method was used to define the distance. In brief, the distance between two clusters K and L was defined as


$$D_{K,L} = \frac{\sum_{j} (x_{K,j} - x_{L,j})^{2}}{\frac{1}{n_{K}} + \frac{1}{n_{L}}}$$

where j indexes the cluster's 13 variable scores.  $x_{K,j}$  is the value of the jth standardized variable score for cluster K and  $n_{K}$  is the number of original patients in cluster K at that stage. At each iteration, the distance was calculated between every possible combination of two clusters. Two clusters with the smallest distance were merged and then new distance was calculated. Once the patient was classified into one cluster they stayed in that cluster for the whole analysis. For each iteration, cubic-clustering criterion (CCC) were calculated. The CCC metrics were used to determine number of clusters. In the published literature, there are no standard criteria to decide the number of clusters, but a local maximum was used as a guideline. Figures below plotted these metrics against the number of clusters (only up to 40) using SAS PROC CLUSTER. It seems 5 clusters separated the population best. A tree diagram is also provided below according to the semi-partial R2 at each iteration, which roughly measures loss of homogeneity within clusters caused by their merger. Thus, small values of the semi-partial R2 indicate that two similar clusters have been merged whereas large values indicate the merger of two heterogeneous clusters. The 4-cluster model retained a semipartial R2 of 0.05 and formed much clearer patterns of patient clusters than the 5-cluster model. Therefore the 4-cluster model was presented in the manuscript.


10



PLOT + + + + Cubic Clustering Criterion



A semipartial  $R^2$  of 0.05, which was the same value used in the TECOS cluster analysis, was used to determine the final number of clusters in the validation analysis in EXSCEL. 4 patient clusters were identified (see tree diagram below).



### Supplemental Appendix 3. 5-Cluster Model Cluster Analysis in TECOS

|                                           | Cluster I    | Cluster II    | Cluster III     | Cluster IV       | Cluster V                               |
|-------------------------------------------|--------------|---------------|-----------------|------------------|-----------------------------------------|
| n                                         | 3285         | 3440          | 3791            | 1616             | 2539                                    |
| Age (years) <sup>a</sup>                  | 68.0 (7.4)   | 65.6 (7.9)    | 63.6 (7.9)      | 62.4 (7.0)       | 66.8 (8.1)                              |
| Women                                     |              | 1516 (44.1 %) | · · ·           | 313 (19.4%)      | 906 (35.7%)                             |
| Race                                      |              | 1010(11170)   |                 |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| White                                     | 3086 (93.9%) | 2729 (79.3%)  | 555 (14.6%)     | 1444 (89.4%)     | 2143 (84.4%)                            |
| Black                                     | 81 (2.5%)    | 199 (5.8%)    | 100 (2.6%)      | 26 (1.6%)        | 41 (1.6%)                               |
| Asian                                     | 22 (0.7%)    | 201 (5.8%)    | 2870 (75.7%)    | 46 (2.8%)        | 126 (5.0%)                              |
| Other                                     | 96 (2.9%)    | 311 (9.0%)    | 266 (7.0%)      | 100 (6.2%)       | 229 (9.0%)                              |
| Region                                    |              |               |                 |                  |                                         |
| Asia Pacific and Other                    | 648 (19.7%)  | 501 (14.6%)   | 2917 (76.9%)    | 283 (17.5%)      | 216 (8.5%)                              |
| Eastern Europe                            |              | 1212 (35.2%)  | 81 (2.1%)       | 560 (34.7%)      | 1469 (57.9%)                            |
| Latin America                             | 207 (6.3%)   | 569 (16.5%)   | 248 (6.5%)      | 173 (10.7%)      | 274 (10.8%)                             |
| North America                             |              | 576 (16.7%)   | 289 (7.6%)      | 333 (20.6%)      | 294 (11.6%)                             |
| Western Europe                            | 685 (20.9%)  | 582 (16.9%)   | 256 (6.8%)      | 267 (16.5%)      | 286 (11.3%)                             |
| Ethnicity                                 |              |               |                 |                  | \/                                      |
| Hispanic/Latino                           | 302 (9.2%)   | 660 (19.2%)   | 302 (8.0%)      | 209 (12.9%)      | 325 (12.8%)                             |
| Duration of diabetes (years) <sup>b</sup> | 13.3 (8.6)   | 12.0 (8.3)    | 10.9 (7.6)      | 9.1 (6.3)        | 11.4 (8.3)                              |
| HbA <sub>1c</sub> (%)                     | 7.2 (0.5)    | 7.2 (0.5)     | 7.3 (0.5)       | 7.2 (0.5)        | 7.2 (0.5)                               |
| HbA1c (mmol/mol)                          | 55.3 (6.6)   | 55.8 (7.4)    | 56.5 (6.6)      | 55.8 (7.0)       | 55.5 (7.0)                              |
| Body mass index (kg/m <sup>2</sup> )      | 31.1 (5.4)   | 30.9 (5.6)    | 26.8 (4.3)      | 32.5 (5.5)       | 31.7 (5.6)                              |
| Systolic blood pressure (mmHg)            | 133.9 (16.5) | 137.7 (17.5)  | 132.2 (16.7)    | 137.3 (16.6)     | 135.7 (17.1)                            |
| Diastolic blood pressure (mmHg)           | 74.0 (10.5)  | 77.9 (10.5)   | 76.9 (10.0)     | 80.2 (9.8)       | 78.8 (10.4)                             |
| eGFR (mL/min/1.73 m <sup>2</sup> )§       | 71.6 (19.4)  | 75.2 (22.0)   | 76.5 (20.3)     | 82.1 (21.6)      | 71.7 (21.3)                             |
| eGFR <50 mL/min/1.73 m <sup>2c</sup>      | 358 (11.0)   | 311 (9.1)     | 282 (7.5)       | 68 (4.2)         | 352 (14.0)                              |
| Urinary albumin:creatinine ratio          | 11.0 (4.4,   | 11.8 (3.5,    | 7.6 (3.3, 28.0) | 13.0 (4.4, 37.8) | 17.8 (4.7, 55.0)                        |
| (mg/g)                                    | 31.8)        | 40.8)         |                 |                  |                                         |
| Total cholesterol (mg/dL)                 | 149.8 (34.1) | 176.7 (48.7)  | 157.7 (39.1)    | 181.2 (49.9)     | 173.8 (49.7)                            |
| LDL-cholesterol (mg/dL)                   | 80.9 (95.3)  | 97.8 (40.1)   | 88.1 (34.1)     | 96.3 (41.0)      | 97.4 (40.7)                             |
| HDL-cholesterol (mg/dL)                   | 43.5 (12.3)  | 45.4 (13.9)   | 42.9 (10.8)     | 40.3 (12.2)      | 43.8 (13.0)                             |
| Triglycerides (mg/dL)                     | 142.1 (62.1) | 166.0 (85.7)  | 140.3 (66.0)    | 262.0 (178.2)    | 169.8 (90.5)                            |
| Triglycerides (mmol/L)                    | 1.6 (0.7)    | 1.9 (1.0)     | 1.6 (0.7)       | 2.9 (2.0)        | 1.9 (1.0)                               |
| Prior atherosclerotic coronary            |              |               |                 |                  |                                         |
| disease                                   |              |               | 3007 (79.3%)    | 1505 (93.1%)     | 2116 (83.3%)                            |
| Myocardial infarction                     | 1764 (53.7%) | 554 (16.1%)   | 1454 (38.4%)    | 934 (57.8%)      | 1549 (61.0%)                            |
| >50% coronary stenosis                    |              |               | 2380 (62.8%)    | 1011 (62.6%)     | 1336 (52.6%)                            |
| Prior PCI                                 | 1859 (57.6%) | 393 (11.5%)   | 1560 (41.8%)    | 857 (53.6%)      | 1045 (41.7%)                            |
| CABG                                      | 1302 (39.6%) | 207 (6.0%)    | 1023 (27.0%)    | 440 (27.2%)      | 692 (27.3%)                             |
| Prior cerebrovascular disease             | 439 (13.4%)  | 1678 (48.8%)  | 625 (16.5%)     | 205 (12.7%)      | 641 (25.2%)                             |
| Prior peripheral arterial disease         | 238 (7.2%)   | 1376 (40.0%)  | 436 (11.5%)     | 70 (4.3%)        | 313 (12.3%)                             |
| Prior heart failure                       | 5 (0.2%)     | 79 (2.3%)     | 13 (0.3%)       | 8 (0.5%)         | 2538 (100.0%)                           |
| NYHA class 3 or higher                    | 3 (60.0%)    | 34 (43.0%)    | 7 (53.8%)       | 4 (50.0%)        | 325 (12.8%)                             |
| Cigarette smoking                         |              |               |                 |                  |                                         |
| Current smoker                            | 122 (3.7%)   | 536 (15.6%)   | 311 (8.2%)      | 438 (27.1%)      | 271 (10.7%)                             |
| Prior smoker                              | 2015 (61.3%) | 1120 (32.6%)  | 1215 (32.0%)    | 491 (30.4%)      | 1003 (39.5%)                            |
| Never smoked                              | 1148 (34.9%) | 1784 (51.9%)  | 2265 (59.7%)    | 687 (42.5%)      | 1265 (49.8%)                            |
| Diabetic neuropathy                       | 769 (23.4%)  | 1231 (35.8%)  | 436 (11.5%)     | 141 (8.7%)       | 777 (30.6%)                             |
| Retinopathy                               | 490 (14.9%)  | 597 (17.4%)   | 282 (7.4%)      | 55 (3.4%)        | 440 (17.3%)                             |

### Supplemental Appendix 3-Table 1. Baseline Characteristics by 5 Clusters

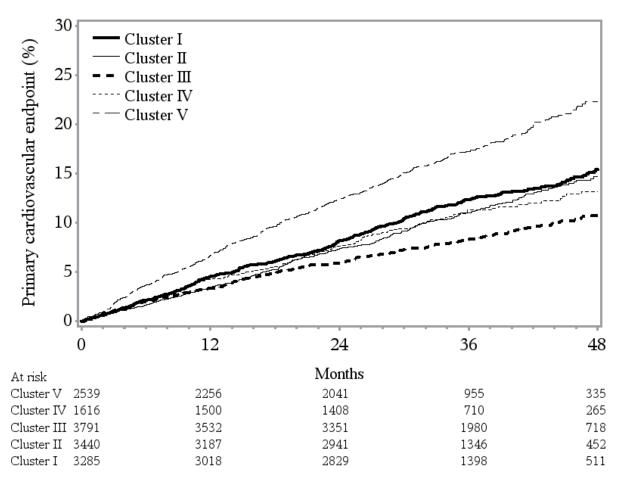
Results for continuous variables are mean (SD) or median (Q1, Q3), and categorical variables are n (%). Urinary albumin:creatinine ratio data available for only 5148 patients (n= 2606 for sitagliptin, n=2542 for placebo). SI conversion factors: urine albumin creatinine ratio (mg/g to g/mol), multiply by 0.1131; total cholesterol, LDL-cholesterol and HDL-cholesterol (mg/dL to mmol/L), multiply by 0.0259; triglycerides (mg/dL to mmol/L), multiply by 0.0113.

Abbreviations: CABG, coronary artery bypass graft; eGFR, estimated glomerular filtration rate; HbA<sub>1c</sub>, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PCI, percutaneous coronary intervention.

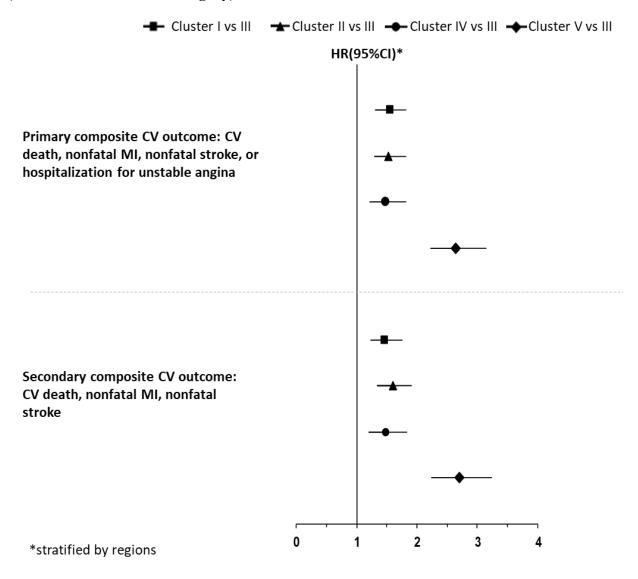
<sup>a</sup>Age missing among patients in Lithuania as birth date could not be provided.

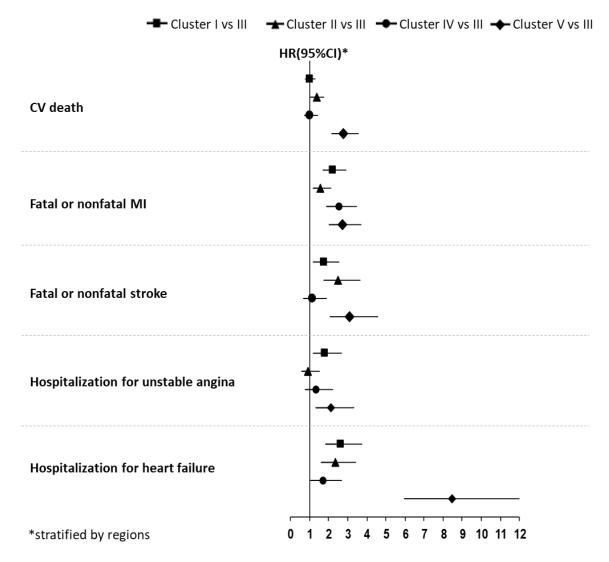
<sup>b</sup>Duration = (year of randomization – year of diagnosis) + 1.

<sup>c</sup>MDRD formula used to calculate eGFR. Site-reported values are presented.


|                            | Cluster I    | Cluster II   | Cluster III  | Cluster IV   | Cluster V    |
|----------------------------|--------------|--------------|--------------|--------------|--------------|
| n                          | 3285         | 3440         | 3791         | 1616         | 2539         |
| Metformin                  | 2656 (80.9%) | 2749 (79.9%) | 3318 (87.5%) | 1388 (85.9%) | 1855 (73.1%) |
| Sulfonylurea               | 1247 (38.0%) | 1431 (41.6%) | 2235 (59.0%) | 640 (39.6%)  | 1092 (43.0%) |
| Thiazolidinedione          | 137 (4.2%)   | 75 (2.2%)    | 101 (2.7%)   | 44 (2.7%)    | 39 (1.5%)    |
| Insulin                    | 966 (29.4%)  | 957 (27.8%)  | 440 (11.6%)  | 327 (20.2%)  | 718 (28.3%)  |
| More than two agents above | 1956 (59.5%) | 1927 (56.0%) | 2669 (70.4%) | 900 (55.7%)  | 1368 (53.9%) |
| Beta blocker               | 2439 (74.2%) | 1552 (45.1%) | 2135 (56.3%) | 1205 (74.6%) | 1991 (78.4%) |
| ACE inhibitor or ARB       | 2812 (85.6%) | 2645 (76.9%) | 2572 (67.8%) | 1365 (84.5%) | 2161 (85.1%) |
| Calcium channel blocker    | 1243 (37.8%) | 1242 (36.1%) | 1055 (27.8%) | 539 (33.4%)  | 882 (34.7%)  |
| Diuretic                   | 1461 (44.5%) | 1554 (45.2%) | 853 (22.5%)  | 653 (40.4%)  | 1499 (59.0%) |
| Thiazide                   | 885 (60.6%)  | 989 (63.6%)  | 540 (63.3%)  | 416 (63.7%)  | 634 (42.3%)  |
| Aspirin                    | 2767 (84.2%) | 2285 (66.4%) | 3185 (84.0%) | 1367 (84.6%) | 1914 (75.4%) |
| Other antiplatelet         | 729 (22.2%)  | 478 (13.9%)  | 1221 (32.2%) | 307 (19.0%)  | 452 (17.8%)  |
| Statin                     | 2926 (89.1%) | 2332 (67.8%) | 3183 (84.0%) | 1327 (82.1%) | 1951 (76.8%) |
| Ezetimibe                  | 262 (8.0%)   | 160 (4.7%)   | 146 (3.9%)   | 115 (7.1%)   | 78 (3.1%)    |
| Nitrates                   | 786 (23.9%)  | 358 (10.4%)  | 766 (20.2%)  | 302 (18.7%)  | 601 (23.7%)  |

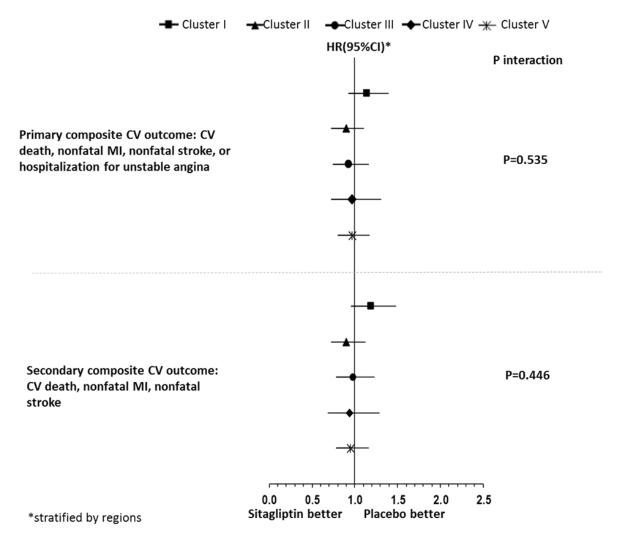
Supplemental Appendix 3-Table 2. Antihyperglycemic and Cardiac-Related Medication Use at Baseline by 5 Clusters


Results are n (%).


Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker.

Supplemental Appendix 3-Figure 1. Kaplan-Meier estimated cumulative incidence of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina endpoint by 5 clusters




## Supplemental Appendix 3-Figure 2. Association between 5 clusters and clinical outcomes (cluster III as reference category)





# Supplemental Appendix 3-Figure 3. Association between 5 clusters and individual cardiovascular clinical outcomes

# Supplemental Appendix 3-Figure 4. Interaction Between Study Treatment and 5 Clusters on Clinical Outcomes

