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Figure S1: A: SEARCH Study Design; B: Participants Eligible for SEARCH 3 and 4 ‘Cohort’ visits.   

 
 

 



Supplemental Tables 

 

Table S1: Number of Non-White SEARCH participants included in each modeling step. Multiple 

outcome regressions are done based on data from two consecutive SEARCH study visits except the last 

visit; participants were excluded in each regression if they had missing data. Outcomes include 

hemoglobin A1c (HbA1c), measured at all six SEARCH visits, and four separate diabetes complications 

measured at the SEARCH cohort visits: Diabetic retinopathy (complication RET), Diabetic kidney 

disease (complication DKD), Cardiovascular autonomic neuropathy (complication CAN), and Peripheral 

neuropathy (complication PN). 

 SEARCH Study Visits Sample 

size 

Hba1c Outcome Regression Cohort 4 Visit 144 

Cohort 3 Visit, Cohort 4 Visit 129 

60-mo Follow-up Visit, Cohort 

3 Visit 

145 

24-mo Follow-up Visit, 60-mo 

Follow-up Visit 

70 

12-mo Follow-up Visit, 24-mo 

Follow-up Visit 

85 

Baseline Visit, 12-mo Follow-up 

Visit 

112 

Baseline Hba1c Value Function Evaluation Baseline Visit 220 

Diabetic Retinopathy  Outcome Regression Cohort 4 Visit 144 

Cohort 3 Visit, Cohort 4 Visit 130 

Diabetic Retinopathy  Value Function 

Evaluation 

Cohort 3 Visit 259 

Diabetic Kidney Disease Outcome Regression Cohort 4 Visit 135 

Cohort 3 Visit, Cohort 4 Visit 119 

Diabetic Kidney Disease Value Function 

Evaluation 

Cohort 3 Visit 229 

Cardiovascular Autonomic Neuropathy 

Outcome Regression 

Cohort 4 Visit 139 

Cohort 3 Visit, Cohort 4 Visit 119 

Cardiovascular Autonomic Neuropathy Value 

Function Evaluation 

Cohort 3 Visit  244 

Peripheral Neuropathy  Outcome Regression Cohort 4 Visit 150 

Cohort 3 Visit, Cohort 4 Visit 128 

Peripheral Neuropathy Value Function 

Evaluation 

Cohort 3 Visit 260 

 

 

 



Analysis Approach
The aim of the analysis is to use historical data (throughout all SEARCH visits)
to estimate the effect of two different estimated treatment policies: πwhite and
πnonwhite on the outcome of patients over a period of time.

1 Notation and Model Covariates

We use the following notation:
Let Xt denotes a set of covariates that affects treatment assignments at time t
Let At denotes the treatment at time t
Let Zt denotes a set of covariates that affects the outcome at time t
Let Yt(z,a) denotes the outcome of treatment a and covariate z at time t

Given a discrete time point t = 1, ...,T (T = 6 in this dataset); we observed
{St = {Xt ,Zt},At ,Yt(zt ,at)} for each subject. For this analysis, the covirates set
Xt includes age at diagnosis, sex, SEARCH study site, SEARCH visit, and T1D
duration. The covariates set Zt includes age at diagnosis, sex, SEARCH site, T1D
duration, maximum parental education, health insurance type, smoking status,
physical activity, screen time, and an indicator variable for non-Hispanic Black
(versus other nonwhite). Note that although Xt and Zt overlaps, Xt is used in the
propensity score models in Section 2 and Zt is used in the outcome regression
models in Section 3.

Treatment options at each time point At include two aspects of diabetes man-
agement: insulin delivery modality and self-monitored glucose frequency. In the
primary outcome analysis, Yt is a measure of glycemic control HbA1c whereas in
each of the secondary outcome analyses, Yt is whether the subject has the follow-
ing early diabetes complication: Diabetic Retinopathy, Diabetic Kidney Disease,
Cardiovascular Autonomic Neuropathy, and Peripheral Neuropathy.
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2 Multivariate propensity score modeling to estimate
the diabetes treatment regimen distributions

The treatment regimen, or distribution of treatments, among the white subgroup
was represented by πwhite, while the treatment regimen observed among the non-
white subgroup was represented by πnonwhite. Data from the six possible SEARCH
study visits were used to model a propensity score to estimate the treatment regi-
men distributions in both subgroups: white and nonwhite controlling for age, sex,
SEARCH study site, SEARCH visit, and T1D duration. The models were fit sep-
arately for racial/ethnic subgroups, i.e. the πnonwhite was fit on the nonwhite sub-
population and the πwhite was fit on the white subpopulation. Multinomial logistic
regression was used to fit the probability of treatment options given a linear com-
bination of the aforementioned covariates. Three propensity score models were
fit for insulin delivery modality, SMG (before cohort visits), and SMG with CGM
use (cohort visits), respectively. Two separate models for frequency of glucose
monitoring were fit for the visits (before the cohort visits versus cohort visits) to
incorporate the availability of continuous glucose monitoring (CGM) that became
available over the duration of the study.

Treatment regimen is a map π : X → Pm from covariates X to a vector of proba-
bilities of size m denoting m different treatment options.

The first step is to estimate a propensity score function Ψ(x) using a multino-
mial logistic regression fitted to {Xi,Ai}. Note that Ψ(x) = (ψ1(x), ...,ψm(x)) is a
vector of probability for m different treatment options.

We fit the propenstity score function on two subpopulations: white and nonwhite.
This gives us Ψwhite(x) and Ψnonwhite(x) which are the estimate for two different
treatment regimens πwhite and πnonwhite

3 Estimation of the effect of the diabetes treatment
regimens on clinical outcomes

The second step is estimating each policy’s effect on the outcome of patients over
time. This problem is often known as off-policy policy evaluation in the rein-
forcement learning literature (see [1] and [2] for review of methods) and is also in
the tradition of estimating counterfactual quantities within the potential outcome
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framework in the statistcal causal inference literature. In this analysis, we take
the approach of approximating the action-value function (Q-function) in the con-
text of finite horizon (i.e. the number of discrete time points T is finite). The
approach is based on the Fitted Q Iteration (FQI) algorithm [3] which is a model-
free off-policy learning for batch mode reinforcement learning in the context of
infinite horizon setting. A modification of FQI called Fitted Q Evaluation (FQE
[4]) for off-policy policy evaluation has been shown to work well based on empir-
ical study [1]. Details of our approach to estimate the Q function using regression
in the finite horizon setting is given below.

The sequential data that we observed {St = {Xt ,Zt},At ,Yt(zt ,at)} for each subject
can be modeled with a Markov Decision Process (MDP). In our case, the MDP is
defined by < S,A,P1,P,µy >

• S is the state space which consist of both X(covariates that affects treatment
assignments) and Z (covariates that affects the outcome)

• A is the set of treatment options

• P1 is the intial state distribution and P is the transition function representing
the transition probability P(s′|s,a)

• µy is the mean outcome model which specifies the mean of Yt(st ,at)

Given a MDP defined by < S,A,P,µy >, a trajectory τ is a sequence of states St ,
actions At , and Yt from t = 1, ...,T . Our observational data are i.i.d n trajectetories
{τ1, ...,τn}. The data generating mechanism is defined by the intial state distribu-
tion P1, transition probability P, a density with the mean outcome µy, as well as
a treatment regimen πD that spicifies the conditional probability of the treatment
options in the data.

In the context of this problem, we are interested in estimating the counterfactual
quantity

V πT
(s) = EP,πT [

T

∑
t=1

γ
t−1Yt |S1 = s] (1)

where γ is the discounting factor and πT is the target treatment policy (not the
treatment policy generating the data πD )
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In our analysis, we need to estimate the following two functions

V πwhite
(s) and V πnon-white

(s)

Estimating the above functions can be done recursively by the definitons below

V π(s) := Ea∼π(s)[Q
π
0 (s,a)]

Qπ
t (s,a) := Es′[Yt(s,a)+ γEa′∼π(s′)[Q

π
t+1(s

′,a′)]]

Given V πwhite
(s) and V πnon-white

(s), we can then estimate the following quantity
v(π) = 1

n ∑
n
i V π(si) for any population of size n with the initial states si. The

quantities v(πwhite) and v(πnon-white) represent the effect of two policies on the
outcome in a population of interest.

To estimate the value function V π(s) and subsequently v(π), we take a regression-
based procedure to estimate the Q function above. Based on the observational data
of trajectories {τ1, ...,τn} which in our scenario has missing data at some time-
points, we approximate a sequence of Qπ

t function starting at t = T and iterate
backward from t = T −1 to t = 1 based on data from two consecutive timepoints.

At t = T (last time point), we use regression to approximate the function

QT (s,a) = E[YT (s,a)]

Then, at each time-point t = T −1, ...,1, we first construct the following pseudo-
value ỹt

ỹt = yt + γ ∑
at+1

ψ
π
at+1

(xt+1)Q̂t+1(zt+1,at+1) (2)

We then use regression to approximate the function Qt based on {((xt ,zt ,at), ỹt)i; i=
1, ...,nt} where nt is the number of subjects with data available for timepoint t and
t +1 and in this case γ = 1 (no discounting; discounting is not necessary since T
is finite).

At baseline visit, we can therefore estimate V π(s) for each subject and evaluate
the treatment regimen outcomes at the population-level by computing the average
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of the outcome across a population:

v(π) =
1
n

n

∑
i

V π(si)

Note that in this manuscript, the primary outcome is glycemic control (Hba1c %).
Because we set γ = 1 (no discounting), V πT

(s) is just the average Hba1c level
across 6 visits under the target treatment policy πT according to equation (1).

For the secondary outcomes (risk of developing diabetes complications at either
cohort visits), we modify equation (1) to

V πT
(s) = EP,πT [y1 +(1− y1)y2|S1 = s]

where y1 is probability of developing complication at cohort visit 1 and y2 is the
probability of developing complication at cohort visit 2. Similarly, for these sec-
ondary outcomes, we need to modify equation (3) to

ỹt = yt + γ(1− yt) ∑
at+1

ψ
π
at+1

(xt+1)Q̂t+1(zt+1,at+1)

4 Weighted Bootstrap for Inference of v(π)

We now discuss the inference for the value function v(π) and the conference in-
terval for the estimate of v(π). In this work, we rely on the multiplier bootstrap
or weighted bootstrap to perform inference on v(π). Specifically, the weighted
bootstrap has the following weights wi = ξi/ξ̄ where ξi has a standard exponen-
tial distribution and ξ̄ = n−1

∑
n
i=1 ξi .

We first define (di j,ui j) for j = 1, ...,K and i = 1, ...,n where K is the finite num-
ber of time steps and n is the total number of subjects. Let di j be the indicator
of patient i having data at visit j and let ui j be the data for patient i at visit j i.e.
ui j = (Si j,Ai j), let hi = (di j,ui j,yi j;1 ≤ j ≤ k). Also, denote the shorthand nota-
tion ũi j(a) = (Si j,a)

Let π(a|X ,θ) be the propensity score for treatment option a given covariates X
and parameter θ . Let θ̂n be the estimate for θ given a dataset, and note that it
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can be written as a differentiable function of the empirical process Pn of the data
{hi, i = 1, ...,n}

Let P∗n be the weighted bootstrap process. Define the weighted bootstrap empiri-
cal measure as follow: P∗n f = n−1

∑
n
i=1(ξi/ξ̄ ) f (Xi)

At the K’th (last) time step, it can be shown that the parameter of the estimated Q
function has the form

Ψ̂nk =

(
Pnd ju juT

j

Pnd j

)−1
Pnd j(u jy j)

Pnd j

And Ψ̂nk is a differentiable function of Pnh and θ̂n

For j = 1, ...,K−1, the parameter of the estimated Q function has the form

Ψ̂n j =

(
Pnd ju juT

j

Pnd j

)−1 Pnd ju j(y j +∑ã∈A π(ã,θn)(ũ j+1(ã))T Ψ̂n j+1)

Pnd j

Hence, Ψ̂n j is a differentiable function of Pnh,Ψ̂n j+1, ...,Ψ̂nk and θ̂n

Specifically, at baseline,

V̂n1(xi0) = ∑
ã∈A

π(ã,θn)(ũi, j+1(ã))T
Ψ̂n1

And finally,
v̂n1(θn) = PnV̂n1(xi0)

Since K is finite, and by the chain rule, we obtain that v̂n1(πθn) is a Hadamand
differentiable functional of an empirical process contained in a Donsker class and
thus

√
n(v̂n1(θn)− v0(θn)) d N (0,σ2) (3)

v0(θn) is the expected value function at baseline of future patients from the same
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population receiving the same propensity for treatment (reflected in θn). Since
θ̂n →p θ0, combined with the smoothness of

√
n(v̂n1(θ)− v0(θ)) over θ in a

neighborhood of θ0, the covergence in (3) follows (See lemma 13.3 of [5]).

Also, suppose v̂∗n1
(θn) is the weighted bootstrap version, we obtain

√
n(v̂∗n1

(θn)− v̂n1(θn)) d N (0,σ2) (4)

conditioned on data, via similar arguements as above replacing Pn with P∗n com-
bined with theorem 2.6 and 2.9 of [5]

5 Imputation of Missing Longitudinal Values of HbA1c

This section describes the multiple imputation method used to estimate the Non-
White subgroup and White subgroup HbA1c outcome as well as their confidence
intervals. Specifically, Table 2 reported that the population mean of the longi-
tudinal average of HbA1c is 9.2 (95% confidence interval = (8.9, 9.4)) for the
Non-White Subgroup and 8.2 (95% confidence interval = (8.1, 8.3)) for the White
Subgroup. Note that no imputation was performed for the analysis described in
previous sections where we estimate the outcomes under the two different treat-
ment regimens.

Because some longitudinal HbA1c values for each subject are missing, to esti-
mate longitudinal average we need to impute some values. Out of 978 subjects,
7.7% has HbA1c values for all 6 visits , 17.8% has values for 5 visits, 21.6% has
values for 4 visits, 20.9% has values for 3 visits, 16.6% has values for 2 visits,
and 15.5% has values for 1 visit. Multiple imputation allows us to account for
the additional uncertainty of the unobserved (true) values of these longitudinal
HbA1c values. We use the 2l.pan method [6] from the mice R package [7] to per-
form the imputation (for review of various imputation methods for longitudinal
data, see [8]). This method conducts imputation of missing values by sampling
from a linear two-level hierachical model with homogeneous within-subject vari-
ance. Two-level hierachical model is appropriate in this case because the HbA1c
values observed over time are nested within each subject. The following base-
line covariates are included in the model for imputation: age at diagnosis, sex,
SEARCH site, smoking status, maximum parental education, and health insur-
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ance type. Note also that imputation is conducted separately for Non-White and
White subgroup.

The standard multiple imputation procedure is followed. The details of the 5 steps
process is given below.

• Impute the missing longitudinal HbA1c values using 2l.pan method sepa-
rately for the two subgroups.

• For each imputed dataset, calculate the subgroup mean µ̂ j and variance σ̂2
j

of the longitudinal average of the HbA1c values.

• Repeat the imputation 10 times to obtain µ̂ j, σ̂
2
j for j = 1, ...,10

• Average the values of the mean estimate from the imputations to get a point
estimate. µ̃ = 1

10 ∑ j µ̂ j

• Calculate the total variance estimator (for constructing confidence interval)
as follow

σ̃
2 =

1
9

10

∑
j=1

(µ̂ j− µ̃)2 +
1

10

10

∑
j=1

σ̂
2
j
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