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Methods

General workflow

The main goal of the meal response Genome-Wide Association Study (GWAS) is to identify genetic

variants that modulate postprandial metabolite levels independently from fasting, baseline levels.

In order to remove the baseline related variation from the postprandial levels, a prediction model

of postprandial levels has to be generated and subsequently the residuals have to be calculated. As

will be shown in the remainder of this section, two aspects have to be taken into account when con-

structing a predictor: the postprandial levels of some metabolites are linked in a nonlinear fashion

to the baseline levels, and, both baseline and postprandial levels are measured with considerable

amount of measurement noise. We show here that an orthogonal nonlinear least squares (OrNLS)1

regression model accomodates both aspects and, consequently, provides the optimal framework for

determining the postprandial response.

We used the workflow shown in Fig. S1 to compute the residuals for each metabolite. To make

the OrNLS fit robust to outliers, during the least squares minimization process two types of outliers

were removed from the dataset. Zero-outliers, which are postprandial and baseline measurements

close to zero, were removed from both the regression procedure and the final residual computa-

tion, and SD-outliers, which are data points that lie further away from the regression line than 5

standard deviations, were eliminated from the regression procedure but were included in the final

calculation of the residuals. In addition to these steps, for each trait four plots were generated

showing: 1) the postprandial-baseline scatterplot and OrNLS regression line; 2) the scatterplot of

the vertical residuals versus the estimated baseline levels; 3) a histogram of the raw, untransformed

residuals; 4) a Gaussian QQ plot of the residuals. These plots were inspected as quality control

to ensure that the OrNLS procedure did not get stuck in local minima. Finally, the association

analyses were done on the rank-based inverse normal transformed TG and NMR data.

1. Eliminate zero-outliers from the dataset, which are the baseline and

postprandial measurements that are lower than 0.001 times the median

2. Define the SD-outliers as an empty set

3. Fit the OrNLS regression model on the data except the SD-outliers

4. Determine the SD-outliers as the data points that have orthogonal

residuals larger than 5 times the standard deviation

5. If the set of SD-outliers has changed in the last step, go to step 3

and reperform the OrNLS regression

6. If the set of SD-outliers has not changed, calculate the vertical

residuals of all data points except the zero-outliers

7. Perform a rank-based inverse normal transformation on the residuals

Figure S1: Workflow for computing the postprandial response.

1In our discussion, we distinguish orthogonal from ordinary least squares regression in abbreviations by using

‘Or’ for orthogonal and ‘O’ for ordinary.
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An errors-in-variables model for postprandial response

To determine the proper statistical model to investigate genetic determinants that are specific for

the postprandial response, we first assume an errors-in-variables model in which the postprandial

levels yi are linearly proportional to the baseline levels xi

yi = β0 + ξiβ1 + gi + εi (1)

xi = ξi + δi (2)

In equation (1) and (2), ξi are the actual baseline levels without measurement noise, gi the meal

response specific genetic contribution to variation in postprandial levels, β0 and β1 the intercept and

baseline reponse coefficient, and δi and εi the measurement noise on the baseline and postprandial

data respectively.2 In the GWAS setting, the genetic factor gi is assumed to be composed of a

linear combination of genetic variants vij with effect sizes γj

gi = vi0γ0 + vi1γ1 + vi2γ2 + · · ·

In the remainder of this section, we assume that δ and ε are uncorrelated with g and ξ and that

δ and ε are normally distributed with the same variance N (0, σ2). Note that the goal of the

postprandial response GWAS is to determine the genetic effects gi. Genetic variants that only

affect the baseline levels are assumed to be incorporated in the term ξi and are assumed to affect

yi in the same proportion β1 as the non-genetically determined baseline levels. As a consequence,

baseline variants that affect postprandial levels with an effect size that is different from β1 are

assumed to affect baseline and postprandial levels independently, and their effect will therefore be

separated into a pure baseline and response portion.

For the purpose of regression it is important to realize that the actual baseline levels ξi cannot

be observed, and that performing ordinary least-squares (OLS) regression of yi on xi gives biased

estimates of the regression coefficients due to the measurement error δ

E
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E(x2)

= β1
E(ξ2)

E(ξ2) + σ2
+

E(ξ · g)

E(ξ2) + σ2

where we simplified notation by assuming that, without loss of generality, all intercept terms are

set to zero (i.e. ξ and g have zero mean and β0 = 0). The term E(ξ · g) refers to the expected

association between baseline levels and the genetic component that has independent effects on

baseline and postprandial levels. This association will not be exactly zero but can be assumed to

be negligable with respect to the total variance in baseline levels E(x2) – thus not contributing to

the OLS estimate of β1.

A consequence of the biased OLS estimate is that the residuals are correlated with the actual

baseline levels ξi and therefore they do not give a clean measure of the contribution of meal-specific

genetic effects gi since now also the effects of genetic variants affecting ξi are included

eOLS
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2In this discussion, variables with subscript i are used to denote actual data whereas the same variable without

subscript is used to denote the random variable. That is, yi refers to the postprandial level of subject i, whereas y

refers to the abstract random process that generated the values yi and that is composed of the processes ξ, g and ε.



where again we assumed zero intercepts and E(ξ · g)� E(x2).

The correct method to perform regression on variables with equal amount of measurement error

is orthogonal least-squares (OrLS), which is a special case of Deming regression (Fuller, 1987). In

contrast to OLS, which minimizes the vertical distance of each data point to the regression line,

OrLS minimizes the perpendicular distance of each data point to the regression line – i.e. the

distance to the closest point on the regression line – which gives an unbiased estimate of the

regression coefficients in case of uncorrelated measurement noise with equal variances. Due to the

genetic term in (1), the OrLS estimate contains a minor bias:
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)
where again we assumed zero intercepts and E(ξ · g) � E(x2). Refactoring shows that the bias

can be approximated as
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assuming that
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1 B2, with B the bias in the OrLS estimate
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That is, the OrLS estimate is biased by the ratio of the genetic variance and the sum of the

baseline variance and baseline related variance in postprandial levels E(g2)
E(ξ2)+E((β1ξ)2)

. Importantly,

the OrLS bias will typically be much smaller than the bias σ2

E(ξ2)+σ2 in the OLS estimate, which

depends on the variance of the measurement noise. The vertical OrLS residuals now become

eOrLS
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which shows that the association between the vertical OrLS residuals and the baseline levels ξi

is much lower than for the OLS residuals. Importantly, only the vertical OrLS residuals provide

an unbiased measure of genetic effects gi and not the perpendicular ones that are minimized by

orthogonal least squares regression. In fact, it can be shown that the values of eperpi are shrunk

by a constant factor with respect to eOrLS
i , which would therefore result in biased estimates of the

genetic effect sizes γj
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where ξ̂i are the estimated baseline levels, i.e. the observed baseline levels corrected for measure-

ment noise
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In order words, for the fitting of the regression line the summed squares of the orthogonal residuals

are used, whereas for the association analyses the vertical (y-axis) residuals are used to estimate

the effect of gi.

At this point it should be mentioned that a more straightforward alternative for determining

meal responses of metabolites is to calculate the difference (delta) between postprandial and base-

line levels or to adjust postprandial levels for baseline levels as a covariate. From our discussion

here it follows that although the delta approach is robust for cases in which only the intercept β0 is

affected by a meal but not the slope of the response (i.e. β1 ≈ 1), in cases in which the postprandial

levels are proportional with a coefficient β1 6= 1 the delta measure is by definition associated with

the baseline levels ξi. On the other hand, the covariate approach makes no assumptions about

the size of β1, but since the estimate is biased due to measurement noise this adjustment will

still induce an association with the baseline levels. After inspection of the baseline-postprandial

scatterplots of all NMR metabolites we saw that both cases occur in our dataset – i.e. metabolites

with a coefficient β1 different from 1 and metabolites that had substantial measurement error on

baseline and postprandial values (Fig. S2A-C). Therefore, computing the vertical residuals of the

orthogonal regression model is the best approach to cover all cases.

Importantly, we observed that for a number of metabolites, amongst which glucose and several

lipids and ketones, the postprandial levels were related in a strongly nonlinear fashion to the base-

line levels (Fig. S2D-F). For these metabolites equation (1) has to be generalized to the nonlinear

case. We found that the most pronounced nonlinear responses showed saturation effects for high

baseline levels, which could be adequately modelled by the formula

yi = β0 + β1
ξi

ξiβ2 + 1
+ gi + εi (3)

xi = ξi + δi (4)

Note that equation (3) has the linear relationship (1) as special case, namely, when β2 = 0. There-

fore, we applied the nonlinear errors-in-variables model (3) and (4) on all TG and NMR metabolites

in order to use a single statistical framework and also to model the response of metabolites with

more subtle nonlinear effects.

A possible source for the nonlinear baseline-response relationship of certain metabolites is that

baseline levels are indicative of metabolic health and therefore also affect the time when the peak

is reached in the postprandial response and the size of the peak. For instance, blood glucose

levels in normal glycemic subjects quickly respond to a meal and return relatively fast to zero,

whereas (pre)diabetic subjects have a much slower and more blunted glucose response. So where

the postprandial time measurement of 150 min. will be relative to the peak in the total postprandial

time curve will therefore determine in a nonlinear fashion what the value is of yi.



Figure S2: Scatterplots of postprandial versus baseline levels of glycoprotein acetyls (A), tyrosine (B),

leucine (C), triglycerides (D), glucose (E) and acetate (F). The size of the postprandial responses of

glycoprotein acetyls, tyrosine and leucine is proportional to the baseline levels, showing that for some NMR

metabolites the regression coefficient β1 is larger than one. The postprandial responses of triglycerides,

glucose and acetate show pronounced nonlinear effects. The red line in the figure is the y = x line, the

green line is the OrNLS regression fit, and the magenta data points are the SD outliers.
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