Cavβ3 regulates Ca²⁺-signalling and insulin expression in pancreatic β cells in a cell-

autonomous manner

Alexander Becker^{1,2}, Barbara Wardas^{1,2}, Houssein Salah¹, Maryam Amini¹, Claudia Fecher-

Trost¹, Qiao Sen¹, Damian Martus¹, Andreas Beck¹, Stephan E. Philipp¹, Veit Flockerzi¹,

Anouar Belkacemi^{1,*}

¹Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches

Zentrum für Molekulare Signalverarbeitung (PZMS) der Universität des Saarlandes, 66421

Homburg, Germany

²contributed equally

*Correspondence:

Anouar Belkacemi

Institut für Experimentelle und Klinische

Pharmakologie und Toxikologie

Universität des Saarlandes

66421 Homburg, Germany

Phone: +49 6841 1626405

Fax:

+49 6841 1626402

E-Mail: Anouar.Belkacemi@uks.eu

1

Supplementary Figure Legend

Supplementary Figure 1. Depolarization-induced Ca^{2+} entry in wild-type and Cavβ3-KO β-cells. (A) Mean Fura-2 (F340/F380) ratiometric traces in the presence of 2 mM extracellular Ca^{2+} before and after addition of 25 mM potassium in wild-type (black) and Cavβ3-KO (red) cells. Application of 2 μM nimodipine reduced Ca^{2+} -entry. (B) Resting Ca^{2+} , peak amplitude and area under the curve of the potassium-induced Ca^{2+} -influx, shown as Tukey's box and whiskers with the boxes extend from the 25th to the 75th percentile and the line inside the box shows the median. The inter-quartile ranges (IQR) represent the difference between the 25th and 75th percentiles. Whiskers are extended to the most extreme data point that is no more than $1.5 \times IQR$ from the edge of the box and outliers beyond the whiskers are depicted as dots. The indicated P-values were calculated by Mann-Whitney test and the number of measured cells (x) per experiment (y) are indicated as (x/y) in panel B.

Supplementary Figure 2. Cavβ3 inhibits frequency of low (3 mM) glucose induced Ca²⁺ oscillations. (A) Representative Fura-2 (F340/380) ratiometric traces in the presence of extracellular Ca²⁺ from wild-type (black) and Cavβ3-KO (red) β-cells in the presence of 3 mM extracellular glucose. (B) Numbers of glucose-evoked Ca²⁺ oscillations per minute (left) and the mean peak amplitude per cell (right) from experiments in A. (C) Representative Fura-2 (F340/380) ratiometric traces in the presence of extracellular Ca²⁺ from wild-type β-cells pretreated with vehicle (+vehicle, black) or 10 μM xestospongin C (+Xest. C, gray) for 20 min and xestospongin C was maintained during the whole experiment. (D) Numbers of glucose-evoked Ca²⁺ oscillations per minute (left) and mean peak amplitude per cell (right) from experiments in C. Data in B and C are shown as Tukey's box and whiskers with the boxes extend from the 25th to the 75th percentile and the line inside the box shows the median. The inter-quartile ranges (IQR) represent the difference between the 25th and 75th percentiles. Whiskers are extended to the most extreme data point that is no more than 1.5×IQR from the

edge of the box and outliers beyond the whiskers are depicted as dots. The indicated P-values were calculated by Mann-Whitney test and the number of measured cells (x) per experiment (y) are indicated as (x/y). (E) Co-immunoprecipitation of the IP3R3. Immunoprecipitations were performed with antibodies against Cav β 3 and anti-IP3-receptor type 3 (IP3R3). Eluted protein complexes were subjected to Western blot using a second independent anti-IP3R3 antibody.

Supplementary Figure 3. Full scans for Western blots (uncropped images) which are shown in main Figures 1B, 1C, 4C, 5E,7K and S2E.