## Supplemental Data.

## STAT3 regulates mitochondrial gene expression in pancreatic β-cells and its deficiency induces glucose intolerance in obesity

Anaïs Schaschkow, Lokman Pang, Valerie Vandenbempt, Bernat Elvira, Sara A. Litwak, Beata Vekeriotaite, Elisa Maillard, Marjorie Vermeersch, Flavia MM Paula, Michel Pinget, David Perez-Morga, Daniel J. Gough, Esteban N. Gurzov

| Patient ID        | HP1401 | HP1504   | HP1602 | HP1603  | HP1604   | HP1606   | HP1801   | HP1803 | HP1805 | HP1807   | HP1808   | HP1901 | HP1903   | HP1905   | HP1906 |
|-------------------|--------|----------|--------|---------|----------|----------|----------|--------|--------|----------|----------|--------|----------|----------|--------|
| Age (Years)       | 83     | 75       | 56     | 62      | 79       | 74       | 62       | 43     | 39     | 78       | 62       | 61     | 78       | 60       | 69     |
| Gender            | F      | м        | F      | м       | F        | F        | м        | м      | F      | F        | F        | м      | F        | м        | F      |
| BMI (kg/m²)       | 31.0   | 27.0     | 35.7   | 33.1    | 38.8     | 17.9     | 29.5     | 36.8   | 31.4   | 30.4     | 18.9     | 21.2   | 37.3     | 19.1     | 36.1   |
| Cause of<br>death | trauma | vascular | anoxia | anoxia  | vascular | vascular | vascular | anoxia | anoxia | vascular | vascular | trauma | vascular | vascular | trauma |
| Diabetes<br>(Y/N) | N      | Y/ T2D   | N      | Y / T2D | N        | N        | Y / T2D  | N      | N      | N        | N        | N      | Y / T2D  | N        | N      |
| Group             | Mod Ob | T2D      | Sev Ob | T2D     | Sev Ob   | Lean     | T2D      | Sev Ob | Mod Ob | Mod Ob   | Lean     | Lean   | T2D      | Lean     | Sev Ob |

**Supplementary Table S1. Pancreas donor characteristics – immunofluorescent staining** (Figure 1A, Supplementary Figure S1). Groups were defined using a body mass index (BMI) threshold of the donor as follow: Lean (BMI<30kg/m<sup>2</sup>, n=4), Moderately obese (30 kg/m<sup>2</sup><BMI<35 kg/m, n=3), Severely obese (BMI>35 kg/m, n=4) and type 2 diabetic (independently of the BMI, n=4). BMI was significantly different between groups (p<0.05). Donors were not different in age or sex distribution (p>0.05, with a normal frequency distribution). F=female, M=male, N=No, Y=Yes, T2D=Type 2 diabetes, Mod Ob=Moderately obese, Sev Ob=Severely obese. Diabetes treatment, information available for T2D donors: HP1504: Metformin – HP1603: Metformin and Gliclazide – HP1801: Atorvastatin and insulin.

| Exp ID         | #1       | #2       | #3       | #4     | #5       | #6       |
|----------------|----------|----------|----------|--------|----------|----------|
| Age (Years)    | 80       | 83       | 75       | 46     | 74       | 76       |
| Gender         | М        | М        | F        | F      | м        | м        |
| BMI (kg/m²)    | 26.23    | 31.14    | 27.3     | 25.4   | 33       | 28.4     |
| Cause of death | vascular | vascular | vascular | anoxia | vascular | vascular |
| Diabetes (Y/N) | N        | N        | Ν        | N      | N        | N        |
| Group          | Lean     | Mod Ob   | Lean     | Lean   | Mod Ob   | Lean     |

**Supplementary Table S2.** Pancreas organ donor characteristics for mitochondrial function in isolated human islets (Figure 4F, Supplementary Figure S10). F=female, M=male, N=No, Y=Yes, Mod Ob=Moderately obese.

| siRNA name | Company/catalogue<br>number                          | Sequence                        |
|------------|------------------------------------------------------|---------------------------------|
| STAT3 #1   | (Qiagen, Hilden,<br>Germany, SI02662338)             | 5'-CAGCCTCTCTGCAGAATTCAA-3'     |
| STAT3 #2   | (Qiagen, Hilden,<br>Germany, SI02662898)             | 5'-CAGGCTGGTAATTTATATAAT-3'     |
| STAT1 #1   | (Life Tecnologies-<br>Invitrogen,<br>STAT1HSS110273) | 5'GGAUUGAAAGCAUCCUAGAACUCAU-3'  |
| STAT1 #2   | (Life Tecnologies-<br>Invitrogen,<br>STAT1HSS110274) | 5'-CCUGUCACAGCUGGAUGAUCAAUAU-3' |

Supplementary Table S3. List of siRNAs used in the study.

| Stage           | Compound                  | Final concentration          | Company                                               |  |  |
|-----------------|---------------------------|------------------------------|-------------------------------------------------------|--|--|
|                 | MCDB131 no Glutamine      |                              | Life Technologies, #10372-019                         |  |  |
|                 | GlutaMAX                  | 2 mM                         | Thermo Fisher, #35050                                 |  |  |
| 1               | NaHCO3                    | 1.5 g/l                      | Merck Millipore, #1.06329.0500                        |  |  |
| (3 days, change | BSA fV                    | 0.5%                         | Sigma, #A7030                                         |  |  |
| medium every    | Glucose                   | 10 mM                        | Sigma, #G8769                                         |  |  |
| day)            | Activin A                 | 100 ng/ml                    | PeproTech, #120-14E                                   |  |  |
|                 | CHIR                      | 5 µM (day 1), 0.5 µM (day 2) | Axon Medchem, #1386                                   |  |  |
|                 | MCDB131 no Glutamine      |                              | Life Technologies, #10372-019                         |  |  |
| 2               | GlutaMAX                  | 2 mM                         | Thermo Fisher, #35050                                 |  |  |
| (2 dave change  | NaHCO3                    | 1.5 g/l                      | Merck Millipore, #1.06329.0500                        |  |  |
| (3 days, change | BSA fV                    | 0.5%                         | Sigma, #A7030                                         |  |  |
| day)            | Glucose                   | 10 mM                        | Sigma, #G8769                                         |  |  |
| uay)            | L-Ascorbic acid           | 0.25 mM                      | Sigma, #A4554                                         |  |  |
|                 | FGF-7                     | 50 ng/mL                     | PeproTech, #100-19                                    |  |  |
|                 | MCDB131 no Glutamine      |                              | Life Technologies, #10372-019                         |  |  |
|                 | GlutaMAX                  | 2 mM                         | Thermo Fisher, #35050                                 |  |  |
|                 | NaHCO3                    | 2.5 g/l                      | Merck Millipore, #1.06329.0500                        |  |  |
| 2               | BSA IV                    | 2%                           | Sigma, #A7030                                         |  |  |
| <b>3</b>        |                           | 10 mM                        | Sigma, #G8769                                         |  |  |
| (2 days, change | L-ASCORDIC ACID           | 0.25 mM                      | Sigma, #A4554                                         |  |  |
| medium every    | FGF-7                     | 0.25 uM                      | Sigma, #\$4572                                        |  |  |
| day)            | SANT-T                    | 0.25 µW                      | Sigma, #84572<br>Sigma #82625                         |  |  |
|                 |                           | 100 pM                       | Selleckchem #\$2618                                   |  |  |
|                 | ITS-X                     | 1.200                        | Selleckchem, #S2618                                   |  |  |
|                 | TPB                       | 200 pM                       | Santa Cruz #SC-204424                                 |  |  |
|                 | MCDB131 no Glutamine      | 200 11W                      | Life Technologies #10372_019                          |  |  |
|                 | GlutaMAX                  | 2 mM                         | Life Technologies, #10372-019<br>Thermo Fisher #35050 |  |  |
|                 | NaHCO3                    | 2 5 al                       | Merck Millipore #1 06329 0500                         |  |  |
|                 | BSA fV                    | 2.0 g/i                      | Sigma, #A7030                                         |  |  |
|                 | Glucose                   | 10 mM                        | Sigma #G8769                                          |  |  |
| 4               | L-Ascorbic acid           | 0.25 mM                      | Sigma #A4554                                          |  |  |
| (4 days, change | FGF-7                     | 50 ng/mL                     | PeproTech, #100-19                                    |  |  |
| medium every    | SANT-1                    | 0.25 µM                      | Sigma #\$4572                                         |  |  |
| day)            | Retinoic acid (RA)        | 0.1 uM                       | Sigma, #R2625                                         |  |  |
|                 | LDN-193189                | 200 nM                       | Selleckchem, #S2618                                   |  |  |
|                 | EGF                       | 100 ng/ml                    | StemCell Technologies, #78006                         |  |  |
|                 | Nicotinamide              | 10 mM                        | Sigma, #N3376                                         |  |  |
|                 | Activin A                 | 10 ng/ml                     | PeproTech, #120-14E                                   |  |  |
|                 | MCDB131 no Glutamine      |                              | Life Technologies, #10372-019                         |  |  |
|                 | GlutaMAX                  | 2 mM                         | Thermo Fisher, #35050                                 |  |  |
|                 | NaHCO3                    | 1.5 g/l                      | Merck Millipore, #1.06329.0500                        |  |  |
|                 | BSA fV                    | 2%                           | Sigma, #A7030                                         |  |  |
|                 | Glucose                   | 20 mM                        | Sigma, #G8769                                         |  |  |
|                 | ITS-X                     | 1:200                        | Thermo Fisher, #51500056                              |  |  |
|                 | Heparin                   | 10 µg/mL                     | StemCell Technologies, #07980                         |  |  |
| 5               | Zinc Sulfate              | 10 µM                        | Sigma, #Z0251                                         |  |  |
| (4 days, change | Retinoic acid (RA)        | 0.05 µM                      | Sigma, #R2625                                         |  |  |
| medium every    | SANT-1                    | 0.25 µM                      | Sigma, #S4572                                         |  |  |
| day)            | LDN-193189                | 100 nM                       | Selleckchem, #S2618                                   |  |  |
|                 | GC-1                      | 1 µM                         | Tocris, #4554                                         |  |  |
|                 | GSiXX                     | 100 nM                       | Merck Millipore, #565790                              |  |  |
|                 | ALK5inhll                 | 10 µM                        | ENZO, #ALX-270-445                                    |  |  |
|                 | Betacellulin              | 20 ng/ml                     | PeproTech, #100-50                                    |  |  |
|                 | Penicillin - Streptomycin | 100U/ml - 0.1mg/ml           | Sigma, #P4333                                         |  |  |
|                 | ROCK inhibitor Y-27632    | 10 µM                        | StemCell Technologies, #72304                         |  |  |
|                 | Heparin                   | 10 ng/ml                     | StemCell Technologies, #07980                         |  |  |
|                 | MCDB131 no Glutamine      |                              | Life Technologies, #10372-019                         |  |  |
|                 | GlutaMAX                  | 2 mM                         | Thermo Fisher, #35050                                 |  |  |
|                 | NaHCO3                    | 1.5 g/l                      | Merck Millipore, #1.06329.0500                        |  |  |
|                 | BSA fV                    | 2%                           | Sigma, #A7030                                         |  |  |
| 6               | Glucose                   | 20 mM                        | Sigma, #G8769                                         |  |  |
| (7-8 days,      | ITS-X                     | 1:200                        | Thermo Fisher, #51500056                              |  |  |
| change          | Heparin                   | 10 µg/mL                     | StemCell Technologies, #07980                         |  |  |
| medium every    | Zinc Sulfate              | 10 µM                        | Sigma, #Z0251                                         |  |  |
| second day)     | LDN-193189                | 100 nM                       | Selleckchem, #S2618                                   |  |  |
|                 | ALK5inhll                 | 10 µM                        | ENZO, #ALX-270-445                                    |  |  |
|                 | GC-1                      | 1 µM                         | Tocris, #4554                                         |  |  |
|                 | GSIXX                     | 100 nM                       | Merck Millipore, #565790                              |  |  |
|                 | Penicillin - Streptomycin | 1000/ml - 0.1mg/ml           | Sigma, #P4333                                         |  |  |
|                 | CluteMAX                  | 014                          | Lite Technologies, #103/2-019                         |  |  |
|                 |                           | 2 mM                         | Morek Millinger #1 00000 0500                         |  |  |
|                 | INARIGUS                  | 1.5 g/i                      | Nierck Millipore, #1.06329.0500                       |  |  |
|                 | BSA IV                    | 2%                           | Sigma, #A/030                                         |  |  |
|                 | Glucose                   | 20 mM                        | Sigma, #G8769                                         |  |  |
| 7               | Henerin                   | 1:200                        | Inermo Fisher, #51500056                              |  |  |
| (8 days, change | neparin<br>Zine Sulfete   | 10 µg/mL                     | StemCell Technologies, #07980                         |  |  |
| medium everv    | Zinc Sulfate              | 10 µM                        | Sigma, #20251                                         |  |  |
| second day)     | GG-1                      | 1 µM                         | 10cr/s, #4554                                         |  |  |
|                 | INK (SPE00405)            | 10 µM                        | Sigma, #236813                                        |  |  |
|                 | JINNI (SP600125)          | 20 µM                        | Selleckcnem, #SP600125                                |  |  |
|                 | RSV<br>D400               | 75 µM                        | Sigma, #K5010                                         |  |  |
|                 | R420                      | ∠µM                          | Selleckcnem, #S2841                                   |  |  |
|                 | Ponicillin Strentemucin   |                              | Sigma #P4222                                          |  |  |
|                 | renicillin - Streptomycin | 1000/mi - 0.1mg/mi           | olgina, #P4333                                        |  |  |

Supplementary Table S4. List of molecules used for iPSC differentiation into  $\beta$ -like cells.

| Antibody                  | Company        | Reference   | Dilution |  |  |  |
|---------------------------|----------------|-------------|----------|--|--|--|
| Western blot              |                |             |          |  |  |  |
| STAT3                     | Cell Signaling | 4904        | 1/1000   |  |  |  |
| STAT3                     | Cell Signaling | 9139        | 1/1000   |  |  |  |
| p-Ser727-STAT3            | Cell Signaling | 9134        | 1/1000   |  |  |  |
| p-Tyr705-STAT3            | Cell Signaling | 9145        | 1/1000   |  |  |  |
| TOMM20                    | Abcam          | ab186735    | 1/1000   |  |  |  |
| VDAC1                     | Cell Signaling | 4661        | 1/1000   |  |  |  |
| HDAC2                     | Cell Signaling | 57156       | 1/1000   |  |  |  |
| COX IV                    | Cell Signaling | 4850        | 1/1000   |  |  |  |
| Cytochrome c              | BD biosciences | 556432      | 1/500    |  |  |  |
| STAT1                     | Cell Signaling | 9176        | 1/1000   |  |  |  |
| GAPDH                     | TACS           | 2275-PC-100 | 1/3000   |  |  |  |
| α-tubulin                 | Sigma          | T5168       | 1/5000   |  |  |  |
| β-actin                   | Sigma          | A1978       | 1/5000   |  |  |  |
| Immunofluorescence        |                |             |          |  |  |  |
| STAT3                     | Cell Signaling | 9139        | 1/250    |  |  |  |
| Insulin                   | Dako           | A0564       | 1/2000   |  |  |  |
| COX IV                    | Cell Signaling | 4850        | 1/250    |  |  |  |
| Glucagon                  | Sigma          | G2654       | 1/1000   |  |  |  |
| OCT4-A                    | Cell Signaling | 2840        | 1/500    |  |  |  |
| PDX1                      | R&D system     | AF2419      | 1/400    |  |  |  |
| Anti-Mouse-Alexa 488      | Thermo Fisher  | A11029      | 1/1000   |  |  |  |
| Anti-Guinea-Pig-Alexa 568 | Thermo Fisher  | A11075      | 1/2000   |  |  |  |
| Anti-Rabbit-Alexa 568     | Thermo Fisher  | A11036      | 1/1000   |  |  |  |

Supplementary Table S5. List of antibodies used for Western blot and immunofluorescence analysis.

| Gene name (specie)       | Primer sequences or catalogue number |  |  |  |
|--------------------------|--------------------------------------|--|--|--|
| STAT2 (human)            | F: CTTTGAGACCGAGGTGTATCACC           |  |  |  |
| STATS (liuliali)         | R: GGTCAGCATGTTGTACCACAGG            |  |  |  |
| INSULTN (human)          | F: CCAGCCGCAGCCTTTGTGA               |  |  |  |
| INSULIN (numan)          | R: CCAGCTCCACCTGCCCCA                |  |  |  |
| MAE A (human)            | F: GCCAGGTGGAGCAGCTGAA               |  |  |  |
| MAF-A (numan)            | R: CTTCTCGTATTTCTCCTTGTAC            |  |  |  |
| NEUROC2 (human)          | F: GACGACGCGAAGCTCACCAA              |  |  |  |
| NEUROG3 (numan)          | R: TACAAGCTGTGGTCCGCTAT              |  |  |  |
| <b>DDV1</b> (human)      | F: AAAGCTCACGCGTGGAAA                |  |  |  |
| PDAT (numan)             | R: GCCGTGAGATGTACTTGTTGA             |  |  |  |
|                          | F: CCTAACAACCCCCCTCCTAAT             |  |  |  |
| mt-ND4 (numan)           | R: CGTGATAGTGGTTCACTGGATAAG          |  |  |  |
|                          | F: GCAGCCTAGCATTAGCAGGAATA           |  |  |  |
| mt-ND5 (numan)           | R: GCTCAGGCGTTTGTGTATGA              |  |  |  |
|                          | F: GATATACTACAGCGATG                 |  |  |  |
| mt-ND6 (numan)           | R: TCATACTCTTTCCTACCCAC              |  |  |  |
|                          | F: CGTGTTTGTGTGCCTGCTGG              |  |  |  |
| mt-cytB (human)          | R: CGGTCATGTACTTCTCGTCC              |  |  |  |
|                          | F: GTAAAATGGCTGAGTGAAGC              |  |  |  |
| mt-1 Y (human)           | R: GCCTAACCCCTGTCTTTAGA              |  |  |  |
|                          | F: ATTTAGGTTAAATACAGACC              |  |  |  |
| mt-1 w (numan)           | R: GAAATTAAGTATTGCAACTT              |  |  |  |
|                          | F: TCTTGTAGTTGAAATACAAC              |  |  |  |
| mt-1Q (numan)            | R: TCTCGCACGGACTACAACCA              |  |  |  |
| met TI 1 (human)         | F: ACTTTTAAAGGATAACAGCT              |  |  |  |
| mt-1L1 (numan)           | R: AATTTTTGGGGGCCTAAGA               |  |  |  |
| ATD <sup>9</sup> (humon) | F: CAACTAAATACTACCGTATG              |  |  |  |
| ATP8 (numan)             | R: GCTTTGGTGAGGGAGGTAGG              |  |  |  |
| ATDE (human)             | F:CATTAACCTTCCCTCTACACT              |  |  |  |
| ATPO (numan)             | R: GTAGGCTTGGATTAAGGCGA              |  |  |  |
| CADDU (human)            | F: CAGCCTCAAGATCATCAGCA              |  |  |  |
| GAPDH (numan)            | R: TGTGGTCATGAGTCCTTCCA              |  |  |  |
| l actin (human)          | F: CTGTACGCCAACACAGTGCT              |  |  |  |
| p-actin (numan)          | R: GCTCAGGAGGAGCAATGATC              |  |  |  |
| mt-ND4 (mouse, Taqman)   | Mm04225294_s1                        |  |  |  |
| mt-ND5 (mouse, Taqman)   | Mm04225315_s1                        |  |  |  |
| mt-cytB (mouse, Taqman)  | Mm04225271_g1                        |  |  |  |
| UCP2 (mouse, Taqman)     | Mm00627599_m1                        |  |  |  |
| β-actin (mouse, Taqman)  | Mm00607939_s1                        |  |  |  |

**Supplementary Table S6. List of probes used for qPCR.** Real-time quantitative PCR was performed using the Biorad CFX96 machine (Biorad, Hercules, CA, USA) and the SYBR green PCR Master Mix (Biorad). F: forward R: reverse.



Supplementary Figure S1. STAT3 is expressed in the cytoplasm of islet cells from human subjects. Representative immunofluorescent staining of STAT3 (green) and insulin (red) in sequencing pancreas cuts from Lean (BMI<30kg/m<sup>2</sup>), Moderately obese (30 kg/m<sup>2</sup><BMI<35 kg/m), Severely obese (BMI>35 kg/m) and type 2 diabetes (T2D) organ donors. Scale bar: 50µm.



**Supplementary Figure S2. STAT3 expression is enhanced in mouse islet cells from obese mice.** Representative immunofluorescent staining of STAT3 (green), insulin (red) and DAPI (blue) in pancreas from C57BL/6 mice fed a high-fat diet for 14 weeks or a standard chow diet used as controls (n=3-4). Scale bar: 20µm.



**Supplementary Figure S3. STAT3 is expressed in the cytoplasm in mouse islet cells from obese mice.** Representative immunofluorescent staining of STAT3 (green), insulin (red) and DAPI (blue) in pancreas from C57BL/6 mice fed a high-fat diet for 14 weeks (n=3). Scale bar: 50µm.





Supplementary Figure S4. STAT3 is localized in the mitochondria in islet cells from obese mice. STAT3 staining colocalized with COX IV, a mitochondrial marker, indicating that STAT3 is present in the mitochondria in the islet cells. Representative immunofluorescent staining of STAT3 (green), COX IV (red) and DAPI (blue) in pancreas from C57BL/6 mice fed a high-fat diet for 14 weeks (n=3). Protein co-localisation was estimated using Pearson's coefficient. Scale bar:  $50\mu m$ . \*\*\*p< 0.001.



Supplementary Figure S5. The MipCre/ERT promoter insertion did not affect body weights and glucose homeostasis in high fat fed mice. (A) Following administration of tamoxifen, 10-week old STAT3<sup>lox/lox</sup>Cre and STAT3<sup>lox/lox</sup> littermate control male mice were maintained on a chow diet. Body weights were measured at 27 weeks of age (n=6). (B) Tamoxifen-treated 10-week old STAT3<sup>lox/lox</sup> and STAT3<sup>lox/lox</sup> Cre littermate male mice were maintained on a high-fat diet for 12 weeks. Cryosections of pancreas were stained with antibodies recognizing STAT3 and insulin. STAT3 positive and insulin negative cells is shown (white arrows). Bar, 20 µm. (C) At the end of high-fat diet, STAT3<sup>lox/lox</sup>Cre and STAT3<sup>lox/lox</sup> mice were fasted for 18 hours prior measuring fasted blood glucose. (D) Following administration of tamoxifen, 10-week old C57BL/6 and MipCRE/ERT littermate male mice were maintained on a high-fat diet for 12 weeks. Body weights were measured every 2 weeks. (E) Body composition (Fat/Lean and water mass) of C57BL/6 and MipCRE/ERT after 12 weeks of high fat feeding. (F-G) Intraperitoneal (IP) glucose tolerance test on C57BL/6 and MipCRE/ERT after 4 (F) and 12 (G) weeks of high fat feeding. Glucose at 2g/kg of body weight concentration was IP injected to mice and blood glucose measured for 2h as indicated. Areas under the curve (AUC) were calculated. (H) Following administration of tamoxifen, 10-week old STAT3<sup>lox/lox</sup>Cre, STAT3<sup>lox/lox</sup>, MipCRE/ERT and C57BL/6 littermate control male mice were maintained on a high fat diet for 12 weeks and body weights measured. (I) Oral glucose tolerance test on 12-week high fat fed STAT3<sup>lox/lox</sup>Cre, STAT3<sup>lox/lox</sup>, MipCRE/ERT and C57BL/6 mice. AUC were calculated. \*p< 0.05.



Supplementary Figure S6. Effect of partial STAT3 deletion on mouse energy expenditure. (A) Following administration of tamoxifen, 10-week old STAT3 lox/+ and STAT3 lox/+ Cre littermate male mice were maintained on a high-fat diet for 12 weeks. Body weights were measured every 2 weeks. (B) Tissues were harvested from high-fat fed STAT3<sup>lox/+</sup>Cre and STAT3<sup>lox/+</sup> control male mice and the relative weights for white adipose tissue (WAT), liver, gastrocnemius muscle and pancreas were measured. (C) At the end of high-fat diet, STAT3<sup>lox/+</sup>Cre and STAT3<sup>lox/+</sup> mice were fasted for 18 hours prior measuring fasted blood glucose. Blood samples were obtained through a tail-nick and glucose concentrations were measured using a glucometer. Fed blood glucose was determined using the same method but without fasting. (**D**) Intraperitoneal insulin tolerance tests were performed on STAT3<sup>lox/+</sup>Cre and STAT3<sup>lox/+</sup> control male mice 12 weeks after high-fat feeding. Mice were fasted for 4 hours and insulin was injected into the intraperitoneal cavity at 0.65mU/g (starting blood glucose: 11.53±1.24mM STAT3<sup>lox/+</sup>Cre and 10±1.49mM STAT3<sup>lox/lox</sup>). AUC were calculated. (E) STAT3<sup>lox/+</sup>Cre and STAT3<sup>lox/+</sup> control mice were fed on a high-fat diet for 12 weeks. Oxygen consumption (VO<sub>2</sub>), respiratory exchange ratios (RER=  $VO_2/VCO_2$ ), energy expenditure, daily food intake and ambulatory activity were evaluated in 2 consecutive light and dark cycles using the Comprehensive Laboratory Animal Monitoring System (CLAMS).



Supplementary Figure S7. Assessment of ER stress, calcium flux, cell viability and nuclear-encoded mitochondrial genes in STAT3 knockdown EndoC-βH1 cells and STAT3 localisation in MIN6 cells. (A) qPCR analysis of ER stress markers Chop, Bip, ATF3 or ATF4 on STAT3 knockdown EndoC-βH1. Results were normalized with β-actin and GAPDH as housekeeping genes. (B) Assessment of calcium exchange between ER and cytoplasm. Cells were pre-stained with FURA-2M and the baseline was recorded for 4 minutes using a camerabased image analysis system (MetaFluor, Universal Imaging, Ypsilanti, MI). Time-frequency analysis of spectral densities of the Ca<sup>2+</sup> oscillations was computed using AcqKnowledge Software, (Biopac Systems, Goleta, CA), with a Hamming window. We computed the power spectral density (PSD), the integral below the power spectrum for the frequency band 0-0.17 Hz, and the crest factor for the same frequency band (ratio amplitude of the power spectra/integral 0-0.17 Hz). Thapsigargin, as a SERCA2 calcium pump inhibitor which will deplete calcium for the ER, have been added after the equilibrium period. (C) Cell viability analysis after 72h of EndoC-βH1transfected of not with siRNA control or siRNA STAT3. The CellTiter 96® AQueous (Promega) cell viability assay was performed on each sample according to the manufacturer's instructions. (**D**) Cellular fractionation and p-Tyr705, p-Ser727 and total STAT3 localization in palmitate treated MIN6 cells. p-Ser727-STAT3 in the mitochondria fraction was quantified (n=3). (E) Western blot analysis of nuclear-encoded mitochondrial transcription factors TFAM and TFB1M in STAT3 knockdown and control EndoC- $\beta$ H1 cells. GAPDH served as loading control. (F) Indirect mitochondrial mass assessment using nuclear-encoded COX IV and cytochrome c in STAT3 knockdown and control EndoC-βH1 cells. β-actin served as loading control. \*p< 0.05, \*\*\*p< 0.001.



Supplementary Figure S8. STAT1 knockdown does not affect mitochondrial function in EndoC- $\beta$ H1 cells. Measurement of the oxygen consumption rates (OCR) in STAT1 knockdown EndoC- $\beta$ H1 cells (n=4). Western blot showing specific knockdown of STAT1 by siRNAs,  $\alpha$ -tubulin served as loading control. OCR were measured using a Seahorse analyser and normalized to basal rate of control cells. Glu: Glucose 20mM; Oligo: Oligomycin 5 $\mu$ M; FCCP: Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 4 $\mu$ M; Rot/AA: Rotenone/Antimycin A 1 $\mu$ M. \*\*\*p< 0.001.



Supplementary Figure S9. TEM of deficient STAT3 EndoC- $\beta$ H1 cells. Samples transfected for 72h with siRNA control or siRNA for STAT3, were fixed and processed for embedding in epoxy resin, sectioned by ultramicrotomy and analysed by TEM (857-728 mitochondria were quantified). Blue arrows show insulin granules. Red arrows mark the cristae destruction and mitochondria swelling. Yellow arrows show autophagosome structures. Green arrow shows mitophagy. N, nucleus. Scale bar: 500nm.



Supplementary Figure S10. Detailed mitochondrial function following Seahorse analysis of the 6 (A-F) human islet preparations used for STAT3 knockdown (KD). OCR were measured using a Seahorse analyser and normalized to basal rate of control cells. Glu: Glucose 20mM; Oligo: Oligomycin  $5\mu$ M; FCCP: Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone  $4\mu$ M; Rot/AA: Rotenone/Antimycin A 1 $\mu$ M.



Supplementary Figure S11. Immunofluorescence staining of transition markers in different stages of  $\beta$ -like cell differentiation. (A-C). Representative immunofluorescent staining of FoxA2 (red)/OCT4 (green) markers in stage 1 (A), glucagon (red)/insulin (green) in stage 7 (B), SOX17 (red)/STAT3 (green) in stage 1 and STAT3 (red) in stage 4 (C). Scale bar: 50 $\mu$ m