Online-Only Supplementary Material

Eleftheriou A., Petry C.J., Hughes I. A., Ong K.K. and Dunger D.B. The high-risk type 1 diabetes HLA-DR and HLA-DQ polymorphisms are differentially associated with growth and IGF-1 levels in infancy: the Cambridge Baby Growth Study.

Supplementary Table S1. Overview of studies on diabetes-associated HLA and early growth
Supplementary Table S2. Anatomical sites where skinfold thickness was measured
Supplementary Table S3. Frequencies by genotypic group of HLA tag SNPs
Supplementary Table S4. Skinfold thickness (mm) by age and anatomical site
Supplementary Table S5. Comparison of non-genotyped and genotyped subcohorts
Supplementary Figure S1. Study flow chart
Supplementary Figure S2. Method algorithm
Supplementary Material References

SUPPLEMENTARY MATERIAL

Supplementary Table S1. Overview of studies on diabetes-associated HLA and early growth

First author Year (Ref)	Study/ Country	Ν	Birth years	Study Design	No of HLA risk groups	Results
Stene 2001 (1)	Norway	969	1982-1998	Retrospective	5	 Homozygous DQB1*06:02 had highest BW versus DQ2/8 who had lowest BW. Mean ΔBW=354 g (95% CI 105 to 604).
Aroviita 2004 (2)	Finland	1,263	1999-2001	Retrospective	1	 DRB1*13 was more frequent among infants with highest relative BW (<i>P</i>=0.015).
Larsson 2005 (3)	DiPiS/Sweden	16,709	2000-2003	Prospective	7	 DQ2/8, DQ8/06:04, DQ8/X were associated with HrBW (<i>P</i>=0.0006). DQB1*06:03 was associated with increased frequency of HrBW (<i>P</i>=0.025).
Stene 2006 (4)	Norway	471 cases; 1,369 controls	1985-1999	Retrospective	4	 No association between BW and risk of type 1 diabetes even after adjusting for <i>HLA</i>. Hint of DQB1*06:02 carriers having higher BW.
Larsson 2007 (5)	DiPiS/Sweden	19,756	2000-2004	Prospective	7	 The effect of DQ8/DQ2 on HrBW was aggravated by gestational infections (<i>P</i>=0.003).
Locatelli 2007 (6)	DIABFIN/ Italy	4,349	1999-2005	Prospective	3	 No association between HLA and BW or BL. Length of gestation inversely correlated with HLA risk.
Larsson 2008 (7)	DiPiS/Sweden	58 cases; 155 controls	2000-2004	Prospective	2	• High HLA risk correlated with BL (<i>P</i> <0.01).

SUPPLEMENTARY MATERIAL

Jarvinen 2008 (8)	Finland	342	1987-1999	Retrospective	N/A (identified haplotypes)	 Carriers of Finnish-specific HLA haplotype (n=20) had higher BW (3,925 g, SD=446 g) versus non-carriers (3,676 g, SD=439 g). DR13 carriers tended to be heavier versus non-carriers.
Sterner 2011 (9)	TEDDY	5,461	2004-2010	Prospective	4	 Swedish infants were longer at birth if carrying DQ2/8 (P=0.023) or DQ8/8 (P=0.046) independent of parental height.
Peet 2012 (10)	DIABIMMUNE	7,931	2008-2010	Prospective	4	 No association between diabetes-associated HLA risk and BW.
Peet 2014 (11)	DIABIMMUNE	688	2008-2010	Prospective	4	 Length SDS was lower in carriers with very high-risk HLA at ages 12 mo and 24 mo, (<i>P</i><0.05). Weight SDS was significantly lower in carriers of very high-risk genotypes vs. control groups at ages 12 mo, 18 mo and 24 mo (<i>P</i><0.05)

BW, birth weight; BL, birth length; HrBW, high relative birth weight.

Name	Exact site of measurement
Triceps	The posterior midline of upper left arm, halfway between the acromial process and the olecranon.
Subscapular	The oblique angle below the left scapula.
Flank	The diagonal plane in line with the natural angle of the iliac crest taken in the posterior axillary line immediately posterior to the iliac crest.
Quadriceps	Found using a vertical line over the quadriceps muscle at midline of the left thigh, half-way between the top of the patella and the inguinal crease.

Supplementary Table S2. Anatomical sites where skinfold thickness was measured

Each skinfold thickness was measured in triplicate by trained pediatric research nurses.

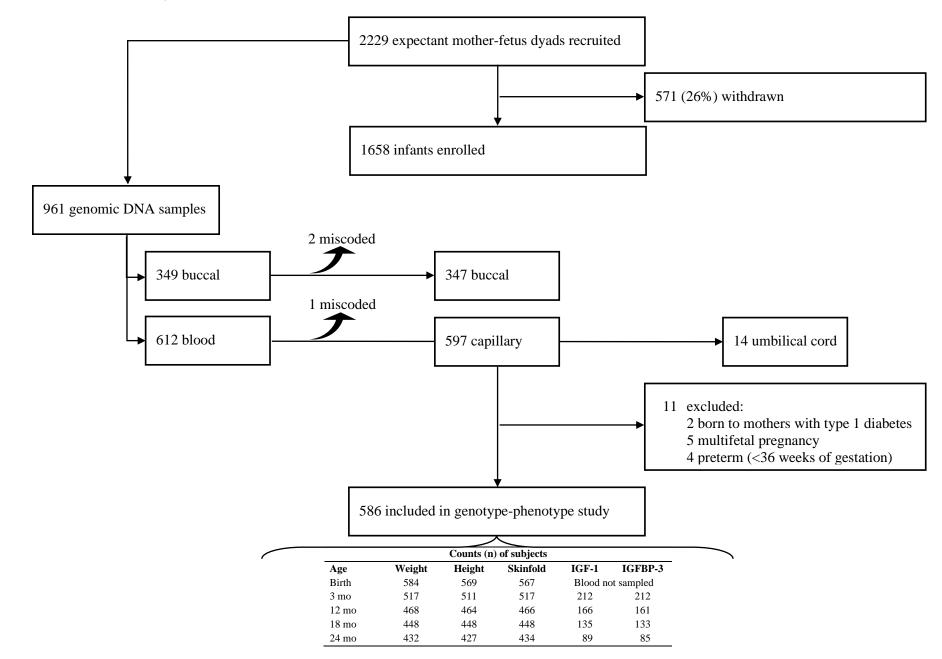
Supplementary Table S3. Frequencies by genotypic group of HLA tag SNPs

Tag SNP	HLA	Major homozygote	Heterozygote	Minor homozygote
rs17426593	<i>DR4</i> (T>C)	366 (64)	189 (33)	14 (3)
rs2187668	<i>DR3</i> (G>A)	436 (75)	140 (24)	8 (1)
rs7454108	<i>DQ8</i> (T>C)	468 (81)	103 (18)	6 (1)

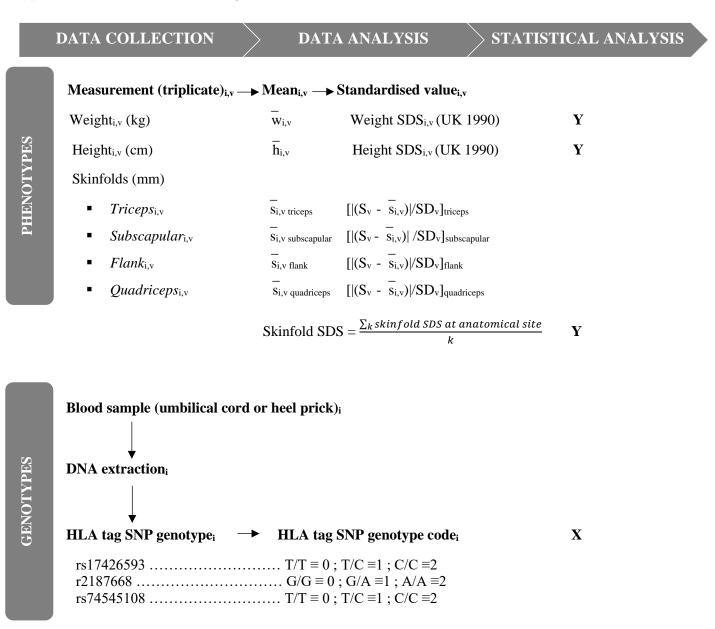
Data are n (%).

		Triceps		Subscapular		Flank		Quadriceps	
	n	Mean \pm SD	n	Mean \pm SD	n	Mean \pm SD	n	$Mean \pm SD$	
Birth	565	5.6 ± 1.6	566	5.5 ± 1.3	567	6.1 ± 1.9	567	8.1 ± 2.6	
3 months	517	8.5 ± 2.2	517	7.1 ± 1.5	517	10.1 ± 2.9	517	17.7 ± 3.4	
12 months	466	9.8 ± 2.6	465	7.5 ± 1.8	466	10.4 ± 3.1	466	17.7 ± 3.7	
18 months	446	9.8 ± 2.4	447	6.9 ± 1.5	443	10.4 ± 3.0	445	16.4 ± 3.6	
24 months	429	9.5 ± 2.4	434	6.7 ± 1.7	431	10.2 ± 3.2	430	15.1 ± 3.6	

Supplementary Table S4. Skinfold thickness (mm) by age and anatomical site (n indicates sample with data)


Skinfold thickness (mm) at each anatomical site was converted to internal SDS adjusted for age (or gestational age for newborn measurements) by using the following formula: SDS = individual measurement minus the cohort mean, divided by the cohort SD.

	Non-genotyped				
	n	$\frac{\text{Mean} \pm \text{SD or n}}{(\%)}$	n	Mean \pm SD or n (%)	Р
Newborn index					
Gestation (weeks)	1,061	39.7 ± 1.7	597	40.0 ± 1.4	0.002
Twins	1,061	39 (4)	597	5 (1)	0.001
Infant sex: male	1,061	537 (51)	597	321 (54)	0.2
Premature birth <36 weeks gestation	1,061	33 (3)	597	6 (1)	0.007
Birth weight (kg)	1,061	3.445 ± 0.554	594	3.528 ± 0.525	0.02
Birth weight SDS	1,061	0.07 ± 0.95	594	0.09 ± 1.03	0.6
Birth length (cm)	1,021	51.3 ± 2.6	578	51.6 ± 2.5	0.03
Birth length SDS	1,021	-0.07 ± 0.96	578	-0.07 ± 0.99	>0.9
Newborn mean skinfold (mm)	1,021	6.3 ± 1.6	578	6.3 ± 1.6	0.9
Pregnancy influences					
Maternal type 1 diabetes	1,044	3 (0)	594	2 (0)	0.9
Primiparous pregnancy	1,040	451 (43)	589	256 (43)	>0.9
Maternal smoking in pregnancy	1,014	61 (6)	561	25 (5)	0.2
Maternal height (cm)	740	165.7 ± 7.3	497	166.3 ± 7.0	0.1
Maternal pre-pregnancy weight (kg)	722	66.5 ± 14.1	481	65.9 ± 12.1	0.6
Maternal pre-pregnancy BMI (kg/m ²)	702	24.3 ± 4.9	471	23.8 ± 4.0	0.6
Maternal age at birth (years)	811	33.4 ± 4.4	527	33.6 ± 4.1	0.5
Paternal age at birth (years)	776	35.7 ± 5.4	515	35.7 ± 5.4	0.7
Post-pregnancy influences					
Birth delivery: cesarean	1,042	349 (34)	588	142 (24)	< 0.0001
3-month feeding: breast milk only	793	324 (41)	526	233 (44)	0.2
Sociodemographic influences					
Index of multiple deprivation	542	9.1 ± 4.3	378	8.8 ± 4.2	0.5


Supplementary Table S5. Comparison of non-genotyped and genotyped subcohorts (n indicates sample with data)

Skinfold, skinfold thickness. Groups were compared by performing t-test or Mann-Whitney U test for continuous variables and chi-square tests for categorical variables.

Supplementary Figure S1. Study flow chart

Supplementary Figure S2. Method algorithm (i ≡ participating child; v ≡ study visit)

k, number of anatomical sites with skinfold thickness data available; SD, cohort standard deviation; S, cohort mean skinfold thickness; skinfold, skinfold thickness; X explanatory variable; Y, explained variable.

SUPPLEMENTARY MATERIAL

Supplementary Material References

1. Stene LC, Magnus P, Rønningen KS, Joner G. Diabetes-associated HLA-DQ genes and birth weight. Diabetes. 2001;50(12):2879-82

2. Aroviita P, Partanen J, Sistonen P, Teramo K, Kekomäki R. High birth weight is associated with human leukocyte antigen (HLA) DRB1*13 in full-term infants. European Journal of Immunogenetics. 2004;31(1):21-6

3. Larsson HE, Lynch K, Lernmark B, Nilsson A, Hansson G, Almgren P, et al. Diabetes-associated HLA genotypes affect birthweight in the general population. Diabetologia. 2005;48(8):1484-91

4. Stene LC, Thorsby PM, Berg JP, Ronningen KS, Undlien DE, Joner G. The relation between size at birth and risk of type 1 diabetes is not influenced by adjustment for the insulin gene (-23HphI) polymorphism or HLA-DQ genotype. Diabetologia. 2006;49(9):2068-73

5. Larsson HE, Lynch K, Lernmark B, Hansson G, Lernmark Å, Ivarsson SA, et al. Relationship between increased relative birthweight and infections during pregnancy in children with a high-risk diabetes HLA genotype. Diabetologia. 2007;50(6):1161-9

6. Locatelli M, Buzzetti R, Galgani A, Montemari AL, Khazrai M, Petrone A, et al. Length of gestation and gender are associated with HLA genotypes at risk for Type 1 diabetes (Italian DIABFIN 3). Diabetic Medicine. 2007;24(8):916-9

7. Larsson HE, Hansson G, Carlsson A, Cederwall E, Jonsson B, Jönsson B, et al. Children developing type 1 diabetes before 6 years of age have increased linear growth independent of HLA genotypes. Diabetologia. 2008;51(9):1623-30

8. Järvinen TM, Harjutsalo V, Kinnunen L, Miettinen ME, Tuomilehto-Wolf E, Tuomilehto J. A population-specific diabetogenic haplotype HLA-A2,Cw1,B56,DR4,DQ8 is associated with high birthweight in Finnish diabetic families. Genes and immunity. 2008;9(3):207-13

9. Sterner Y, Törn C, Lee HS, Larsson H, Winkler C, McLeod W, et al. Country-specific birth weight and length in type 1 diabetes high-risk HLA genotypes in combination with prenatal characteristics. Journal of Perinatology. 2011;31(12):764-9

10. Peet A, Koo P, Ilonen J, Knip M, Tillmann V. Birth weight in newborn infants with different diabetes-associated HLA genotypes in three neighbouring countries: Finland, Estonia and Russian Karelia. Diabetes/Metabolism Research and Reviews. 2012;28(6):455-61

11. Peet A, M HA, Kool P, Ilonen J, Knip M, Tillmann V. Early postnatal growth in children with HLA-conferred susceptibility to type 1 diabetes. Diabetes/Metabolism Research and Reviews. 2014;30:60-8