Parameter	Value
n	17
Age [years]	46.4 ± 2.4
Body weight [kg]	99.8 ± 1.9
BMI [kg/m²]	32.9 ± 0.5
Waist circumference [cm]	111.2 ± 1.7
Waist to hip ratio	1.01 ± 0.01
Total body fat [%]	33.1 ± 1.2
Fasting glucose [mg/dl]	90.4 ± 1.4
Fasting insulin [mU/I]	12.8 ± 1.7
HOMA-IR	2.89 ± 0.40

Supplemental Table 1. Clinical characteristics of study subjects.

Data are shown as mean± SEM

Gene		Primer name	Sequence
Human q	PCR prin	ners	
NR1D1	(REV-	NR1D1_F1	5'-CCAGCAATGTCGCTTCAAGAA-3'
ERBα)			
		NR1D1_R1	5'-TCTGCATCTCAGCAAGCATCC-3'
NR1D2	(REV-	NR1D2_F	5'-CAGATGTCAGCAATGTCGCTTC-3'
ERBβ)			
		NR1D2_R	5'-GCATCCTCTGTTTTTCACGCTT-3'
PER1		PER1_F	5'-ATTCCGCCTAACCCCGTATGT-3'
		PER1_R	5'-CCGCGTAGTGAAAATCCTCTTG-3'
PER2		PER2_F	5'-AGCAGGTGAAAGCCAATGAAG-3'
		PER2_R	5'-AGGTAACGCTCTCCATCTCCTC-3'
PER3		PER3_F	5'-GTCCAAGCCTTACAAGCTGGTTT-3'
		PER3_R	5'-GACCGTCCATTTGTTGGCAT-3'
CLOCK		CLOCK_F	5'-ATTCCACAAGGCATGTCCCA-3'
		CLOCK_R	5'-TTTGCTTCTATCATGCGTGTCC-3'
BMAL1		BMAL1_F	5'-CATTAAGAGGTGCCACCAATCC-3'
		BMAL1_R	5'-CAAAAATCCATCTGCTGCCC-3'
CRY1		CRY1_F	5'-GGGACCTGTGGATTAGTTGGG-3'
		CRY1_R	5'-GCTCCAATCTGCATCAAGCAA-3'
CRY2		CRY2_F	5'-TGCATCTGTTGACACTCATGATTC-3'
		CRY2_R	5'-GGTACTCCCCAGCCCAG-3'

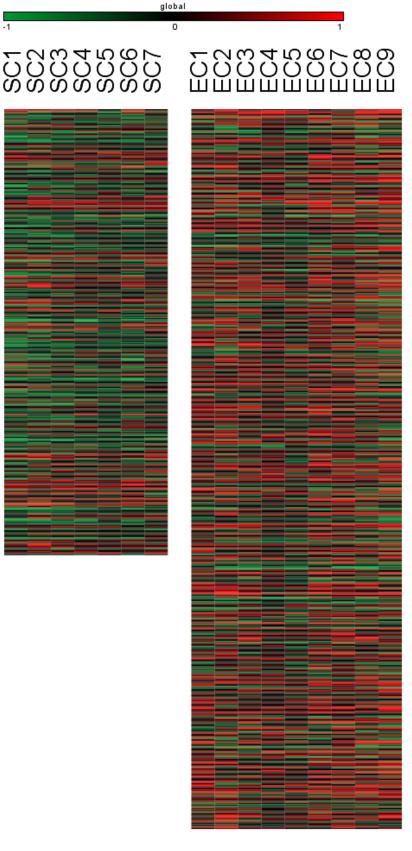
Supplemental Table 2. Primers used for real-time qPCR and promoter mutagenesis

RORA	RORA_F	5'-ACAACCAGCGGGAGGTGA-3'			
	RORA_R	5'-GTTTGGCAAACTCCACCACA-3'			
DBP	DBP_F	5'-GAAAAATCCAGGTGCCGGA-3'			
	DBP_R	5'-CGTTGTTCTTGTACCGCCG-3'			
TEF	TEF_F	5'-AACCGTGTCCAGCACAGAATCT-3'			
	TEF_R	5'-GGTCCGGATTGAAGTTCACATC-3'			
RPLP0	QT00075012	QuantiTect Primer Assay (Qiagen)			
Mouse qPCR pri	imers				
Bmal1	QT00101647	QuantiTect Primer Assay (Qiagen)			
Clock	QT00197547	QuantiTect Primer Assay (Qiagen)			
Cry1	QT00117012	QuantiTect Primer Assay (Qiagen)			
Cry2	QT00168868	QuantiTect Primer Assay (Qiagen)			
Dbp	QT00103089	QuantiTect Primer Assay (Qiagen)			
NR1D1	QT00164556	QuantiTect Primer Assay (Qiagen)			
Per1	QT00113337	QuantiTect Primer Assay (Qiagen)			
Per2	QT00198366	QuantiTect Primer Assay (Qiagen)			
c-Fos	QT00147308	QuantiTect Primer Assay (Qiagen)			
36B4	fw36B4	TCATCCAGCAGGTGTTTGACA			
	rv36B4	GGCACCGAGGCAACAGTT			
Promoter mutag	enesis primers				
mPer2-CRE	mPer2-CRE-MUT fw	CCAGAACAATGTAGCCACCATTGAATTCAATGTAAGCGAGGAAAC			
	mPer2-CRE-MUT rv	GTTTCCTCGCTTACATTGAATTCAATGGTGGCTACATTGTTCTGG			
mPer2-E-BOX	mPer2-E-BOX fw	GGGCGGGCTCAGCGCGCGCGGTGCTAGTTTCCACTATGTGACAGCGGAGG			

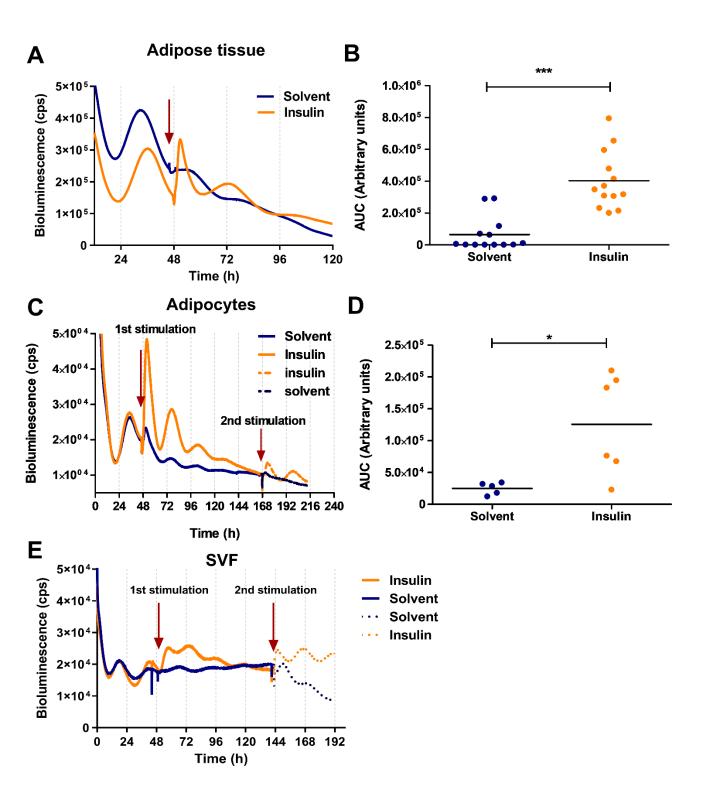
	mPer2-E-BOX rv	CCTCCGCTGTCACATAGTGGAAACTAGCACCGCGCGCGCTGAGCCCGCCC
mPer2-NFY	fw_NFY_mut	GGCACTCCGACCAAAGGCGCGCGCA
	rv_NFY_mut	TGCGCGCGCCTTTGGTCGGAGTGCC
mPer2-SP1	fw_SP1_mut	CAATGGCGCGCGCGGGTTTGGGCTCAGCGCGCGCG
	rv_SP1_mut	CGCGCGCGCTGAGCCCAAACCTGCGCGCGCCATTG
mPer2-NFY-SP1	fw_NFY_SP1_mut	GCACTCCGACCAAAGGCGCGCGCAGGTTTGGGCTCAGCGCGCGC
	rv_NFY_SP1_mut	CGCGCGCGCTGAGCCCAAACCTGCGCGCGCCTTTGGTCGGAGTGC

Supplemental Table 3. Signaling pathways affected in adipose tissue upon the saline infusion and the euglycemic hyperinsulinemic clamp

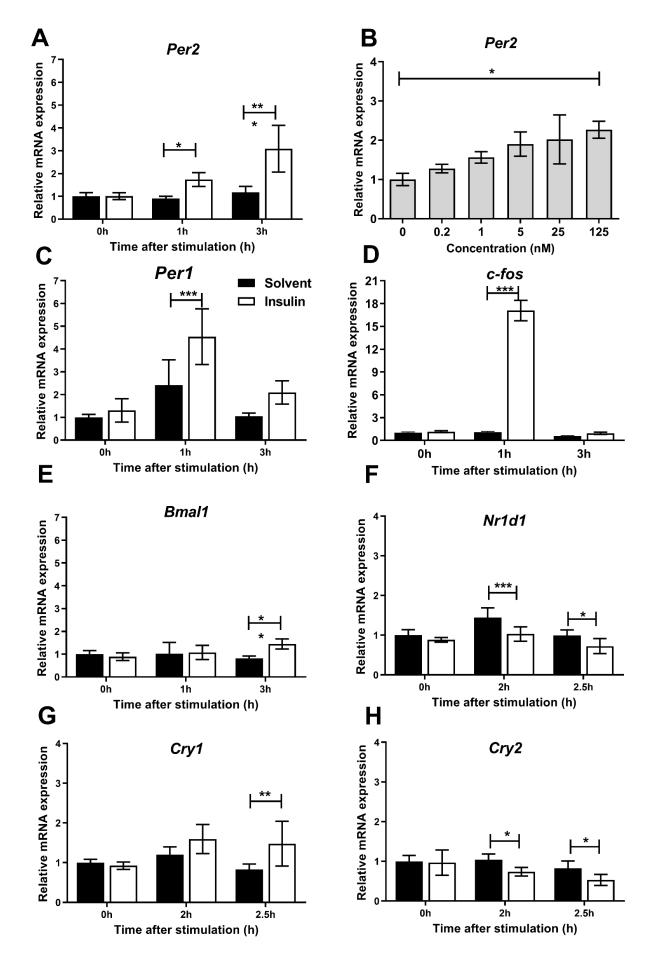
Insa04934Cusning syndromeIO (152)6.60.0043GNAI3Insa05200Pathways in cancer22 (499)4.40.0054ZBTB16, JAK2, AXIN2, AGTR1, FZD10, EDNRB, JAK3, IL12R NOTCH1, SMO, TCF7, FGF18, CDK2, BCL2L11, TGFB2, HSP90AB1, RASSF5, WNT11, GNAI3, GNG7, HES5, RARAInsa05203Viral carcinogenesis11 (193)5.70.0081HIST1H2BB, YWHAB, ATF4, YWHAQ, HIST1H2BG, HDAC6, MAD1L1, YWHAB, CDK2, HIST1H2BD, RELInsa04390Hippo signaling pathway9 (151)6.00.0122YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, T									
hsa04310Wnt signaling pathway11 (141)7.80.0007CXXC4, AXIN2, FZD10, BAMBI, CACYBP, TCF7, SOX17, PRICKLE2, WNT11, NFATC1, DAAM1hsa04934Cushing syndrome10 (152)6.60.0043ATF4, AXIN2, AGTR1, FZD10, TCF7, ITPR1, CDK2, LDLR, W GNAI3hsa05200Pathways in cancer22 (499)4.40.0054ZBTB16, JAK2, AXIN2, AGTR1, FZD10, EDNRB, JAK3, IL12R hSP0AB1, RASSF5, WNT11, GNA13, GNG7, HESS, RARAhsa05203Viral carcinogenesis11 (193)5.70.0081HIST1H2BB, YWHAB, ATF4, YWHAQ, HIST1H2BG, HDAC6, MAD1L1, YWHAB, CDK2, HIST1H2BD, RELhsa04394Hippo signaling pathway9 (151)6.00.0122YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, T TGFB2, WNT11hsa045202Transcriptional misregulation in cancer10 (180)5.60.0135ZBTB16, CEBPB, PER2, PLAU, FUT8, SIN3A, HHEX, CDK14, RARAhsa04659Th17 cell differentiation7 (106)6.60.0156JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARAhsa04659Th17 cell differentiation3 (23)13.00.0183SEC61B, SRPRB, SEC63hsa04658Th1 and Th2 cell differentiation6 (89)6.70.0224JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	KEGG ID	Pathway name	number	%	P-value	Genes			
nsa04310 Writ signaling pathway 11 (141) 7.8 0.0007 PRICKLE2, WNT11, NFATC1, DAAM1 hsa04934 Cushing syndrome 10 (152) 6.6 0.0043 ATF4, AXIN2, AGTR1, FZD10, TCF7, ITPR1, CDK2, LDLR, W GNAI3 hsa05200 Pathways in cancer 22 (499) 4.4 0.0054 ZBTB16, JAK2, AXIN2, AGTR1, FZD10, EDNRB, JAK3, IL12R hsa05203 Viral carcinogenesis 11 (193) 5.7 0.0081 HIST1H2BB, YWHAB, ATF4, YWHAQ, HIST1H2BG, HDAC6, MAD1L1, YWHAB, CDK2, HIST1H2BG, REL hsa04390 Hippo signaling pathway 9 (151) 6.0 0.0122 YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, T TGFB2, WNT11 hsa04559 Th17 cell differentiation 10 (180) 5.6 0.0156 JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARA hsa03060 Protein export 3 (23) 13.0 0.0183 SEC61B, SRPRB, SEC63 hsa04658 Th1 and Th2 cell differentiation 6 (89) 6.7 0.0224 JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	Saline inf	Saline infusion							
Insa04334Cushing syndromeI0 (152)6.60.0043GNAI3GNAI3ZBTB16, JAK2, AXIN2, AGTR1, FZD10, EDNRB, JAK3, IL12RNOTCH1, SMO, TCF7, FGF18, CDK2, BCL2L11, TGFB2, HSP90AB1, RASSF5, WNT11, GNAI3, GNG7, HES5, RARAhsa05203Viral carcinogenesis11 (193)5.70.0081hsa04390Hippo signaling pathway9 (151)6.00.0122YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, TGFB2, WNT11hsa05202Transcriptional misregulation in cancer10 (180)5.60.0135ZBTB16, CEBPB, PER2, PLAU, FUT8, SIN3A, HHEX, CDK14, RARAhsa04659Th17 cell differentiation7 (106)6.60.0156JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARAhsa03060Protein export3 (23)13.00.0183SEC61B, SRPRB, SEC63hsa04658Th1 and Th2 cell differentiation6 (89)6.70.0224JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa04310	Wnt signaling pathway	11 (141)	7.8	0.0007				
hsa05200Pathways in cancer22 (499)4.40.0054NOTCH1, SMO, TCF7, FGF18, CDK2, BCL2L11, TGFB2, HSP90AB1, RASSF5, WNT11, GNAI3, GNG7, HES5, RARAhsa05203Viral carcinogenesis11 (193)5.70.0081HIST1H2BB, YWHAB, ATF4, YWHAQ, HIST1H2BG, HDAC6, MAD1L1, YWHAB, CDK2, HIST1H2BD, RELhsa04390Hippo signaling pathway9 (151)6.00.0122YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, T TGFB2, WNT11hsa05202Transcriptional misregulation in cancer10 (180)5.60.0135ZBTB16, CEBPB, PER2, PLAU, FUT8, SIN3A, HHEX, CDK14, 	hsa04934	Cushing syndrome	10 (152)	6.6	0.0043	ATF4, AXIN2, AGTR1, FZD10, TCF7, ITPR1, CDK2, LDLR, WNT11, GNAI3			
Insa05203Viral carcinogenesisII (193)5.70.0081MAD1L1, YWHAB, CDK2, HIST1H2BD, RELhsa04390Hippo signaling pathway9 (151)6.00.0122YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, T TGFB2, WNT11hsa05202Transcriptional misregulation in cancer10 (180)5.60.0135ZBTB16, CEBPB, PER2, PLAU, FUT8, SIN3A, HHEX, CDK14, RARAhsa04659Th17 cell differentiation7 (106)6.60.0156JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARAhsa05217Basal cell carcinoma5 (62)8.10.0181AXIN2, FZD10, SMO, TCF7, WNT11hsa03060Protein export3 (23)13.00.0183SEC61B, SRPRB, SEC63hsa04658Th1 and Th2 cell differentiation6 (89)6.70.0224JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa05200	Pathways in cancer	22 (499)	4.4	0.0054				
Insa04390Hippo signaling patriway9 (151)6.00.0122TGFB2, WNT11Insa05202Transcriptional misregulation in cancer10 (180)5.60.0135ZBTB16, CEBPB, PER2, PLAU, FUT8, SIN3A, HHEX, CDK14, RARAInsa04659Th17 cell differentiation7 (106)6.60.0156JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARAInsa05217Basal cell carcinoma5 (62)8.10.0181AXIN2, FZD10, SMO, TCF7, WNT11Insa03060Protein export3 (23)13.00.0183SEC61B, SRPRB, SEC63Insa04658Th1 and Th2 cell differentiation6 (89)6.70.0224JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa05203	Viral carcinogenesis	11 (193)	5.7	0.0081	HIST1H2BB, YWHAB, ATF4, YWHAQ, HIST1H2BG, HDAC6, JAK3, MAD1L1, YWHAB, CDK2, HIST1H2BD, REL			
nsa05202Transcriptional misregulation in cancer10 (180)5.60.0135RARAhsa04659Th17 cell differentiation7 (106)6.60.0156JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARAhsa05217Basal cell carcinoma5 (62)8.10.0181AXIN2, FZD10, SMO, TCF7, WNT11hsa03060Protein export3 (23)13.00.0183SEC61B, SRPRB, SEC63hsa04658Th1 and Th2 cell differentiation6 (89)6.70.0224JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa04390	Hippo signaling pathway	9 (151)	6.0	0.0122	YWHAB, YWHAQ, AXIN2, CCN2, FZD10, YWHAB, SMAD7, TCF7, TGFB2, WNT11			
hsa05217Basal cell carcinoma5 (62)8.10.0181AXIN2, FZD10, SMO, TCF7, WNT11hsa03060Protein export3 (23)13.00.0183SEC61B, SRPRB, SEC63hsa04658Th1 and Th2 cell differentiation6 (89)6.70.0224JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa05202	Transcriptional misregulation in cancer	10 (180)	5.6	0.0135	ZBTB16, CEBPB, PER2, PLAU, FUT8, SIN3A, HHEX, CDK14, REL, RARA			
hsa03060 Protein export 3 (23) 13.0 0.0183 SEC61B, SRPRB, SEC63 hsa04658 Th1 and Th2 cell differentiation 6 (89) 6.7 0.0224 JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa04659	Th17 cell differentiation	7 (106)	6.6	0.0156	JAK2, NFKBIE, JAK3, IL12RB1, HSP90AB1, NFATC1, RARA			
hsa04658 Th1 and Th2 cell differentiation 6 (89) 6.7 0.0224 JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1	hsa05217	Basal cell carcinoma	5 (62)	8.1	0.0181	AXIN2, FZD10, SMO, TCF7, WNT11			
	hsa03060	Protein export	3 (23)	13.0	0.0183	SEC61B, SRPRB, SEC63			
hsa04933 AGE-RAGE signaling pathway in 6 (95) 6.3 0.0297 JAK2, AGTR1, EDN1, PLCD4, TGFB2, NFATC1	hsa04658	Th1 and Th2 cell differentiation	6 (89)	6.7	0.0224	JAK2, NFKBIE, JAK3, IL12RB1, NOTCH1, NFATC1			
	hsa04933	AGE-RAGE signaling pathway in	6 (95)	6.3	0.0297	JAK2, AGTR1, EDN1, PLCD4, TGFB2, NFATC1			

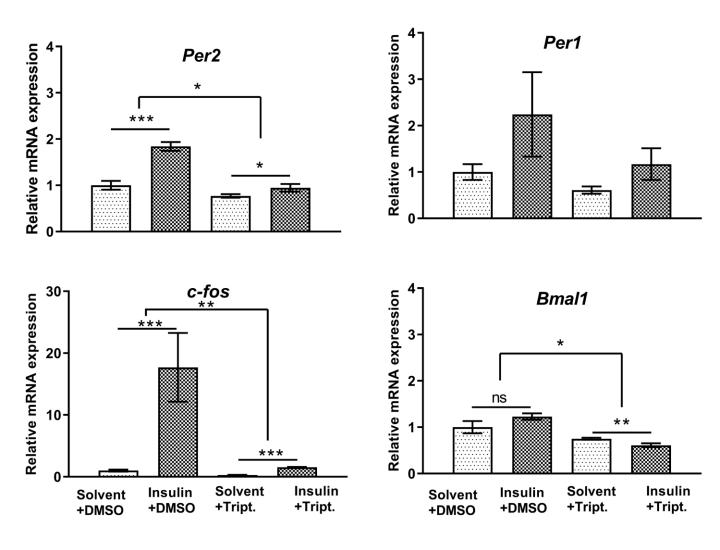

diabetic complications

hsa04916	Melanogenesis	6 (98)	6.1	0.0339	FZD10, EDN1, EDNRB, TCF7, WNT11, GNAI3
hsa04710	Circadian rhythm	3 (30)	10.0	0.0370	PER2, NR1D1, PER1, NR1D1
hsa00533	Glycosaminoglycan biosynthesis	2 (13)	15.4	0.0396	FUT8, B3GNT2
hsa05206	MicroRNAs in cancer	8 (157)	5.1	0.0403	DDIT4, FOXP1, RDX, PLAU, NOTCH1, SOX4, BCL2L11, TGFB2, SOX4,
hsa04915	Estrogen signaling pathway	7 (130)	5.4	0.0417	FKBP5, ATF4, HSPA8, ITPR1, HSP90AB1, GNAI3, RARA
hsa04550	Signaling pathways regulating pluripotency of stem cells	7 (134)	5.2	0.0478	JAK2, ID3, AXIN2, FZD10, JAK3, WNT11, LIFR, LIFR
Euglycem	ic hyperinsulinemic clamp				
hsa05202	Transcriptional misregulation in cancer	18 (180)	10.0	1.08x10 ⁻⁵	ZBTB16, GADD45B, CEBPB, BCL11B, PER2, CEBPE, SP1, CEBPA, MAF, CEBPB, HHEX, HOXA9, LMO2, BCL6, SIX1, CEBPA, SIN3A, HOXA10, GRIA3, RARA
hsa04713	Circadian entrainment	10 (93)	10.8	0.0006	PER2, PLCB1, PER1, ITPR1, CAMK2G, PER3, RASD1, GNAI3, PLCB1, GNG7, GRIA3
	Circadian entrainment Pathways in cancer	10 (93) 28 (499)	10.8 5.6	0.0006 0.0016	PER2, PLCB1, PER1, ITPR1, CAMK2G, PER3, RASD1, GNAI3,
					PER2, PLCB1, PER1, ITPR1, CAMK2G, PER3, RASD1, GNAI3, PLCB1, GNG7, GRIA3 MSH2, ZBTB16, GLI1, RAC3, GADD45B, PIK3R1, AXIN2, PTGER4, PTGER2, NKX3-1, FZD10, NCOA3, SP1, CEBPA, IL7R, FGF18, NOTCH1, PLCB1, FZD4, LAMA2, FGF18, CAMK2G, FZD5,
hsa05200 hsa04750	Pathways in cancer Inflammatory mediator regulation of TRP	28 (499)	5.6 9.7	0.0016	PER2, PLCB1, PER1, ITPR1, CAMK2G, PER3, RASD1, GNAI3, PLCB1, GNG7, GRIA3 MSH2, ZBTB16, GLI1, RAC3, GADD45B, PIK3R1, AXIN2, PTGER4, PTGER2, NKX3-1, FZD10, NCOA3, SP1, CEBPA, IL7R, FGF18, NOTCH1, PLCB1, FZD4, LAMA2, FGF18, CAMK2G, FZD5, HSP90AB1, RASSF5, CEBPA, GNAI3, PLCB1, GNG7, HES5, RARA PLA2G4A, MAP2K3, PIK3R1, PTGER4, PTGER2, TRPV1, PLCB1,

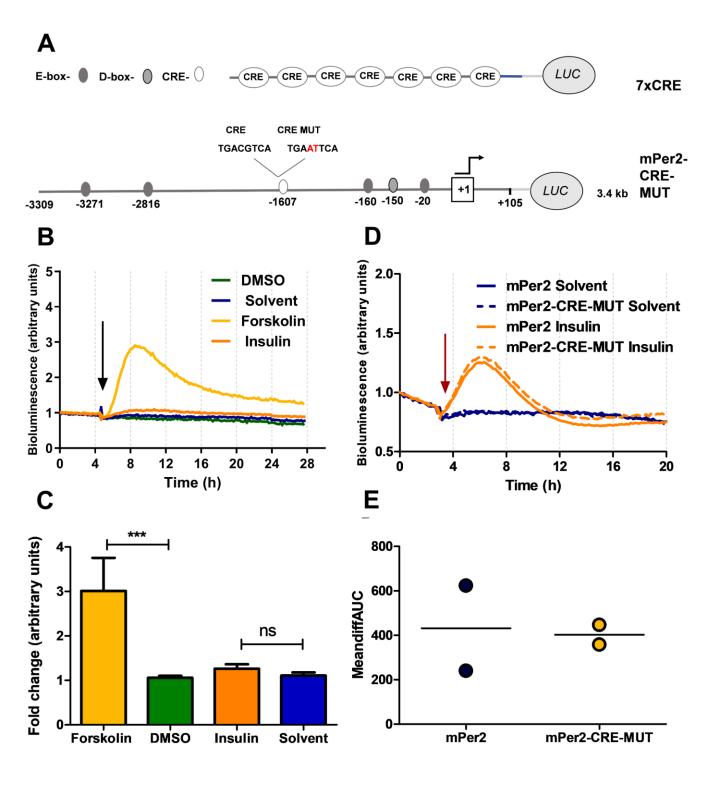

PFKFB3, CREB5, CAB39L, CREB5, TBC1D1, PPP2R1B, CREB5

hsa04310	Wnt signaling pathway	11 (141)	7.8	0.0044	RAC3, AXIN2, FZD10, CTNNBIP1, PLCB1, FZD4, CACYBP, CAMK2G, FZD5, PRICKLE2, PLCB1, NKD1
hsa05224	Breast cancer	11 (141)	7.8	0.0044	GADD45B, PIK3R1, AXIN2, FZD10, NCOA3, SP1, FGF18, NOTCH1, FZD4, FGF18, FZD5, HES5
hsa04725	Cholinergic synapse	9 (110)	8.2	0.0071	KCNJ14, PIK3R1, CREB5, PLCB1, ITPR1, CAMK2G, KCNJ12, GNAI3, CREB5, CREB5, PLCB1, GNG7, CREB5
hsa04730	Long-term depression	6 (56)	10.7	0.0076	PLA2G4A, PLCB1, ITPR1, GNAI3, PLCB1, PPP2R1B, GRIA3
hsa04934	Cushing syndrome	11 (152)	7.2	0.0077	AXIN2, CREB5, FZD10, SP1, PLCB1, FZD4, ITPR1, CAMK2G, FZD5, RASD1, GNAI3, CREB5, CREB5, PLCB1, CREB5
hsa04070	Phosphatidylinositol signaling system	8 (96)	8.3	0.0098	PI4KB, PIK3R1, PIK3C2B, IP6K2, PLCD3, PLCB1, ITPR1, PIK3C3, PLCB1
hsa05217	Basal cell carcinoma	6 (62)	9.7	0.0123	GLI1, GADD45B, AXIN2, FZD10, FZD4, FZD5
hsa04924	Renin secretion	6 (63)	9.5	0.0132	PTGER4, PTGER2, ADRB1, PLCB1, ITPR1, GNAI3, PLCB1
hsa04710	Circadian rhythm	4 (30)	13.3	0.0133	PER2, NR1D1, PER1, NR1D1, PER3
hsa05221	Acute myeloid leukemia	6 (64)	9.4	0.0142	ZBTB16, PIK3R1, PER2, CEBPE, CEBPA, CEBPA, RARA
hsa00051	Fructose and mannose metabolism	4 (32)	12.5	0.0166	GMPPB, MPI, SORD, PFKFB3, PFKFB3, SORD
hsa04728	Dopaminergic synapse	9 (128)	7.0	0.0181	CREB5, PPP2R3B, PLCB1, ITPR1, CAMK2G, GNAI3, CREB5, CREB5, PLCB1, PPP2R1B, GNG7, GRIA3, CREB5
hsa04024	cAMP signaling pathway	12 (195)	6.2	0.0184	GLI1, RAC3, PIK3R1, PTGER2, CREB5, SOX9, SSTR2, ADRB1, PDE4B, CAMK2G, GNAI3, CREB5, CREB5, GRIA3, CREB5
hsa04390	Hippo signaling pathway	10 (151)	6.6	0.0192	YWHAQ, AXIN2, SCRIB, PRKCI, CCN2, FZD10, FZD4, FZD5, PPP2R1B, NKD1


hsa04550	Signaling pathways regulating pluripotency of stem cells	9 (134)	6.7	0.0237	PIK3R1, AXIN2, FZD10, SMARCAD1, JARID2, FZD4, POU5F1, FZD5, LIFR
hsa04916	Melanogenesis	7 (98)	7.1	0.0327	FZD10, EDN1, PLCB1, FZD4, CAMK2G, FZD5, GNAI3, PLCB1
hsa05165	Human papillomavirus infection	16 (315)	5.1	0.0363	PIK3R1, AXIN2, PTGER4, CREB5, SCRIB, PRKCI, FZD10, ITGA11, PPP2R3B, NOTCH1, FZD4, LAMA2, NFX1, FZD5, CREB5, ITGA11, CREB5, PPP2R1B, CREB5, HES5
hsa04150	mTOR signaling pathway	9 (146)	6.2	0.0382	DDIT4, PIK3R1, FZD10, SESN2, RPTOR, FZD4, FZD5, FLCN, CAB39L
hsa04928	Parathyroid hormone synthesis, secretion and action	7 (102)	6.9	0.0394	AKAP13, CREB5, SP1, PLCB1, PDE4B, ITPR1, AKAP13, AKAP13, GNAI3, CREB5, CREB5, PLCB1, CREB5
hsa04664	Fc epsilon RI signaling pathway	5 (64)	7.8	0.0484	PLA2G4A, MAP2K3, RAC3, PIK3R1, MS4A2


Supplemental Figure 1. Heatmap representation of fold changes of all transcripts in SC and EC experiments depicted using a logarithmic color scale. Expression decrease at 240 min in relation to -40 min value is shown in green and expression increase is shown in red. Heatmap was build using the GENE-E software (https://software.broadinstitute.org/GENE-E/).

Supplemental Figure 2. Insulin leads to an increase in mPER2::LUC activity in adipose tissue and isolated adipocytes. Real-time bioluminescence recordings of epididymal adipose tissues explants (A-B), adipose tissue derived adipocytes (C-D) and stromal vascular fraction (E) from mPer2^{Luc} mice. A and C: Adipose tissue (A) and adipocytes (C) were stimulated with either 100 nM insulin or solvent. The second stimulation with insulin was applied to firstly solvent stimulated cells and vice versa (C). Time of stimulation is indicated by the red arrow. Results of one representative experiment are shown. B and D: The area under the induction curve induced by the stimulation were determined. (B) Adipose tissue stimulation. Overall, n=13 for solvent and insulin in eight independent experiments; h=hours; stimulations were performed 3-4 h (n=2), 8-9 h (n=2), 11-12 h (n=3), 15-16 h (n=3), 20-21 h (n=2), or 23-24 h (n=1) after peak. Data are shown as mean. (D) Adipocyte stimulation. Stimulations were performed 1-12 hours after peak. n=5 for solvent and n=6 for insulin. Data are shown as mean. *p<0.05, ***p<0.001 by the Mann-Whitney test. E. Stromal vascular fraction (SVF) derived from adipose tissue explants of PER2::LUC mice stimulated with 100nM insulin or solvent (red arrows).

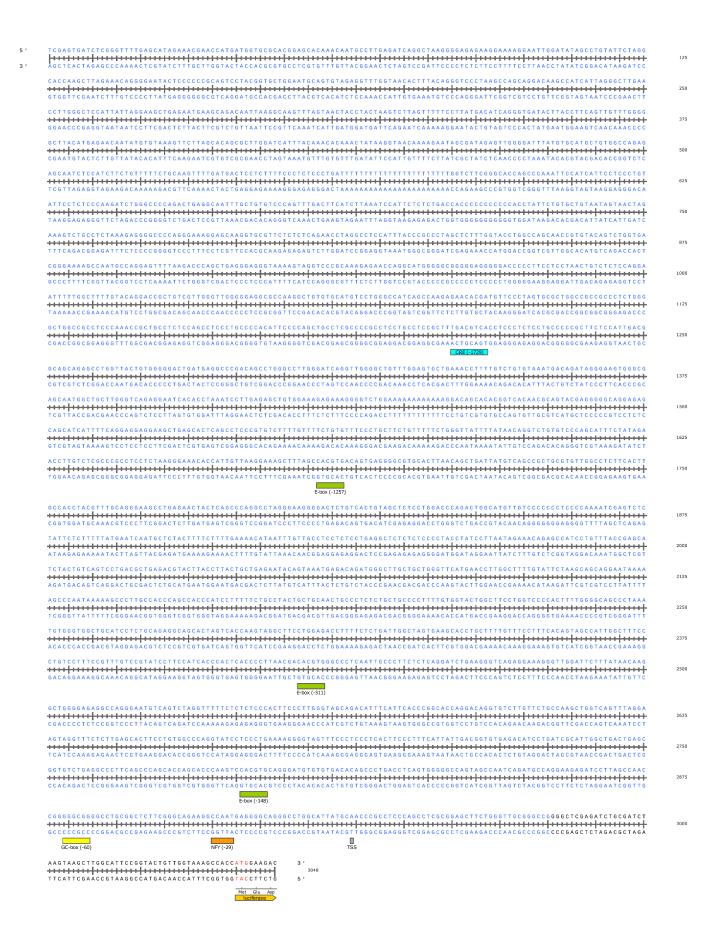


Supplemental Figure 3. Insulin transcriptionally regulates clock genes and immediate early genes in 3T3L1 adipocytes. 3T3-L1 adipocytes were serum starved for 24h and subsequently stimulated with either solvent or 100nM insulin for 1 - 3h (A, C-H). Expression of mRNA for *Per2* (A), *Per1* (C), *c-fos* (D), *Bmal1* (E), *Nr1d1* (F), *Cry1* (G), and *Cry2* (H) was determined with qPCR. (B) Concentration-dependent regulation of the Per2 expression by insulin. Data show the results in mean±SD of six biological replicates (n=6). *p<0.05, **p<0.01, ***p<0.001 by two-way ANOVA and Bonferroni post-hoc test.



Supplemental Figure 4. RNA polymerase II blocker attenuates the insulin-dependent induction of clock gene expression.

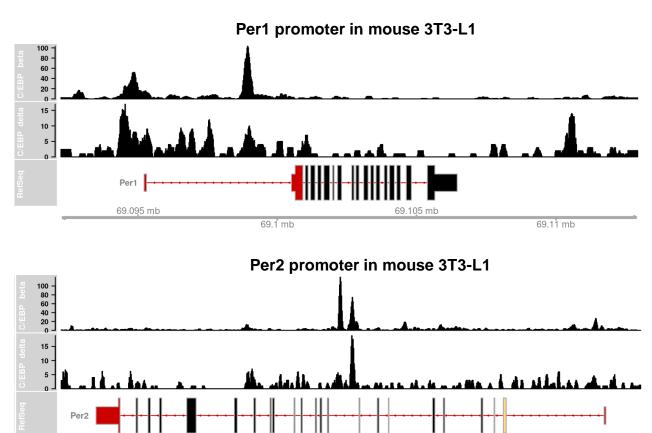
3T3-L1 adipocytes were serum-starved for 24 hours and subsequently stimulated with either triptolide (Tript.) or its solvent DMSO during the treatment with 100 nM insulin or solvent for 1 hour (mPer1 and mc-fos) or 2 hours (mPer2 and mBmal1). The results are shown as mean \pm SD of one experiment with three technical replicates (n=3). Data was normalized to the treatment with solvent + DMSO. *p<0.05, **p<0.01, ***p<0.001 by Student's t test.


Supplemental Figure 5. Insulin-inducible expression from the mPer2 promoter is CRE independent. (A) Schematic representation of the 7xCRE reporter construct containing seven repeats of the Cyclic AMP Responsive Element (CRE) upstream of a minimal promoter (blue) fused to a luciferase (LUC) (above) and of the 3.4 kb mPer2 promoter reporter construct (below). The CRE binding site was mutated using site directed mutagenesis (red font, mPer2-CRE-MUT). B and C: Bioluminescence recordings of 3T3-L1 preadipocytes harboring the 7xCRE luciferase reporter construct. (B) Cells were stimulated with 10 μ M forskolin (n=2), DMSO (n=1), 100 nM insulin (n=3) or solvent (n=1) (time of stimulation indicated by the black arrow). Raw bioluminescence data are shown. (C). Fold change of luminescence after the stimulation (n=4). *p<0.05, **p<0.01, ***p<0.001 by Kruskal-Wallis test with Dunn's multiple comparison test. D and E: Bioluminescence recordings of 3T3-L1 pre-adipocytes harboring the mPer2- or the mPer2-CRE-MUT promoter luciferase reporter construct. (D). Cells were stimulated with either 100 nM insulin (n=3) or solvent (n=2) (time of stimulation indicated by the red arrow). Raw bioluminescence data are shown. (E). Mean difference of the area under the induction curve (MeandiffAUC) determined for each construct (n=2).

Supplemental Figure 6. Insulin-inducible expression from the mPer2 promoter is E-box -20 independent. (A) Schematic representation of the 3.4 kb mPer2 promoter reporter construct. The E-box, 20 bp upstream was mutated using site directed mutagenesis (red font). LUC: luciferase, MUT: mutation, +1 represent the transcriptional starting site. **B and C:** Real-time bioluminescence recordings of 3T3-L1 cells. 3T3-L1 preadipocytes harboring the mPer2- (B) or the mPer2-E-box-MUT (C) promoter luciferase reporter construct were stimulated with either 100 nM insulin or solvent (time of stimulation indicated by the red arrow) (n=2 biological replicates for each construct and treatment).

	GTGCCTTTCACCTTAGCTGTGGGGCACCACTTTGGACACAACGTGTATGTA	
	E-box (-3271)	
++	абесттсаюттсаютсялталсастояттастяття сотятля сала воделаются а так слоссают в бала табет баст теато але бала во На на	
++	TCCCTTTAAGG6CATTTCTCCAATCACCTAAAACCTCCTCCTAG6ACCCACTCCTCCAAG6CCTCACCACTTCCCAGTGATAGCATGTTGGTAACCTATTCTTTAATGTACAGGTGTTTGAAG +++++++++++++++++++++++++++	
A C	ATTCCAGAGCCANATTATAGCAGGATTTCACCTTGAGTATGGGGGATCACCTGGAGTGTGGAGACTACTCCAGGTCCAAGGATCAATCA)
++	ATATTTCCCACCAGCTCTGGTGTTTGAGCACTTAGCCCTTCGTTGTTGGTGTCATTTTTGGAGGTTGTAGAACCTCTGAGGGAACCACACATACAT	
++	САТА СА СА СА АЛА АТТТТА А БАЛА АТА А А В ТА А БТА А Б G G G C A TT G C C T C A G G C A TT G G G G C A C T C A G A C A T G G G G A G C A C C T C G T A G G G A G C A C C T C A G G A G C A C C T C A G G A G C A T C A C C A C A C A C A C A C A C A	
++		
T G	атссасаастсааттсссаабттсссалабсттбатстасабсассалстсссабалетб тсатссасатбастасссатссссассалабасасалабтстатстсабтсаабсаттб 	
ст	GTCCTTΑΤΑΑCCCTGAAACTTGATGCTTCAATCTCTTTTTGCATAGCATGGCAGCAGAATAGTTTTAGTCTGGGAGGGGGTTTTTTTAAAAACTGTGTCTTCAGGGGCTGAAGAGAATAGTTTAG CAGGAATATTGGGACTTGAACTACGAAGTTAGAGAAGAACGTATCGTACCGTCGTCTATCAAAATCAGACCCTCCTCCAAAAAAATTTTTGACACACGAAGTCCCCACTTCTTATCAAAATC	
A G	TTAAAATACATATTGCCTTTACGGAGGACTCAGGTTTTGGTTTCCAGGCACCCATGTGGAGGACACCTCACAACATCTATGCCAGGTGTGGGATACAGTGGAAAAATCCGAGGGATACAGTGGAGAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	
G G	төбсөсасбостттаатоосаббастоббаббосабабболббосббатттотбабттобаббосабостабототасаалостбабттосаббасабосаббастатасабабаласостбтото 	
A A	ACC60GT6066AAATTA666T06T6A60CCT0CGT0T0C6GT0C66CCTAAA6A0TCAA6CT0C66T066A06AATGTTT6ACT0AA66T00T6T6GT0066T0070777666A0666 AAAAAAAAAAAAAAAAAAAAAAAA	
C A	ΤΤΪΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤΤ	
A A ++	САТААСАЙАААБӨТТТТЁТТААСТААТЁАТАСАБАААЁАТСТБААТБЙССАССТТТАЇСТТТТССБАЇТТБААТСССЇССТТБАСАСЇБТААТБТААЁВТССББТТЇАСАТСТВАТСТВАТС АЛАВСТБАВСАТБААВБАВАСТСТВССАВБТБАВСТВТВАВСТВТВТАСТСТТБТТТССАВААСААТБТАВССАССАТТБАСВТСААТБТААВСВАААСААААВВВСССТТТБВБТВСАВ 	
++		
G G	GCTTCTTTGGAAAGGGCCGCTGAAATGAACTTAGTCTCTGGCCCCCATCTGCATCTGAGGAATTGCATGCCTGTCTGCCAGGCAGG	
G G	GTTAGCCGGCTBTGTGTGCGCGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA	
T A	GGCTTCAAGTTCCCTGGCAATGACAAATGACCTTTTTTCCCCTTGGAAGACGTGACAAGCGTAGCCTGCCT	
C G	A 6 G A A A C T C T A C C C C C C T T T G G A C G G G C C G A C G C C T T G G A C C T T C G A C G G G C C A G G G C C G G C C G G C C T C G G C C G C C C G C C C G C C C G C C C G C C C G C	
c c	ΤΑΤC 4 C T G G A G G A G C A C C T C C T G A C T A G C T C C T G T A G C T C C T G T A G C A C C C G C T T C C A G A T C C T G T A G C T C C T G T A A G C T C C A A G C T C C A A A A A A A A A A A A A A A A	
c c	G CATTA GETTA GETTA COTTO COTTO COTTO COTTA COTTO COTTA CONTROLO CONTROLO COTTO COTTO COTTO COTTO COTTO CONTROLO C CRETANA CONTROLO C	
C A	CTAACCAACTAGCACGCAGTATCATTGCAGACGAACGACGAGGGAGG	
G G	TGCTCAGCAGCAGGTCCAGCAGGGCCGTCCTTTTTCCCGTTCACCCTCGCCATGAACCGGGTAGGGCGGAAATGAACTGGGCCGGGCGGG	
G G		
ст	A B B A B B C I C B A C A B B C I C B A B C A B C A B C A B C B C C B C A B A B	
A C	GGECCEGACGTGETEGECEGETGEGEGEGEGEGEGEGEGEGEGETTAGETTA	
	D-box (-150) E-box (-160)	
T G	CAATGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG	
++	GAGCGCACCAAGTGACGGGCCGAGCAAGGGGACAGACGAGATCTGCGATCTAAGTAAG	
ə (j		

Supplemental Figure 7. Mouse Per2 promoter sequence within a luciferase reporter construct. Putative binding sites were screened using the MatInspector software and depicted using the SnapGene software (https://www.snapgene.com/). Per2 promoter sequence is indicated by the blue font and the translation start site of the luciferase gene is shown in red font. Binding sites are indicated using followind colors: green - E-box (5'-CACGTT-3'), dark green - D- box (5'-TTATGTAA-3'), blue - CRE (5'-TGACGTCA-3'), orange – NFY (5'-CCAAT-3'), and yellow – GC-box/SP1 binding site (5'-GGGCGG-3'). TSS (transcription start site) is indicated with a grey box.

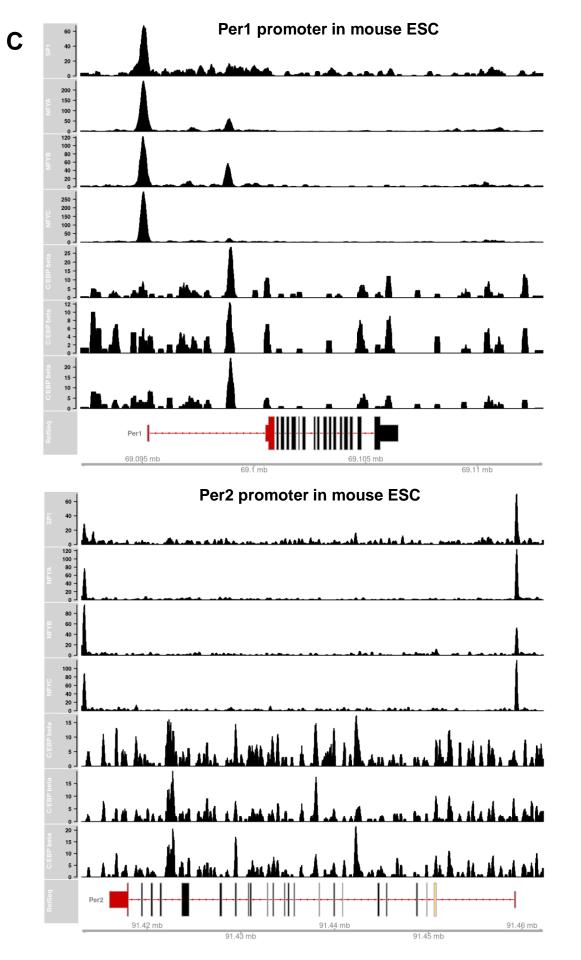

Supplemental Figure 8. Mouse Per1 promoter sequence within a luciferase reporter construct. Putative binding sites were screened using the MatInspector software and depicted using the SnapGene software (https://www.snapgene.com/). Per1 promoter sequence is indicated by the blue font and the translation start site of the luciferase gene is shown in red font. Binding sites are indicated using followind colors: green - E-box (5'-CACGTT-3'), dark green - D- box (5'-TTATGTAA-3'), blue - CRE (5'-TGACGTCA-3'), orange – NFY (5'-CCAAT-3'), and yellow – GC-box/SP1 binding site (5'-GGGCGG-3'). TSS (transcription start site) is indicated with a grey box.

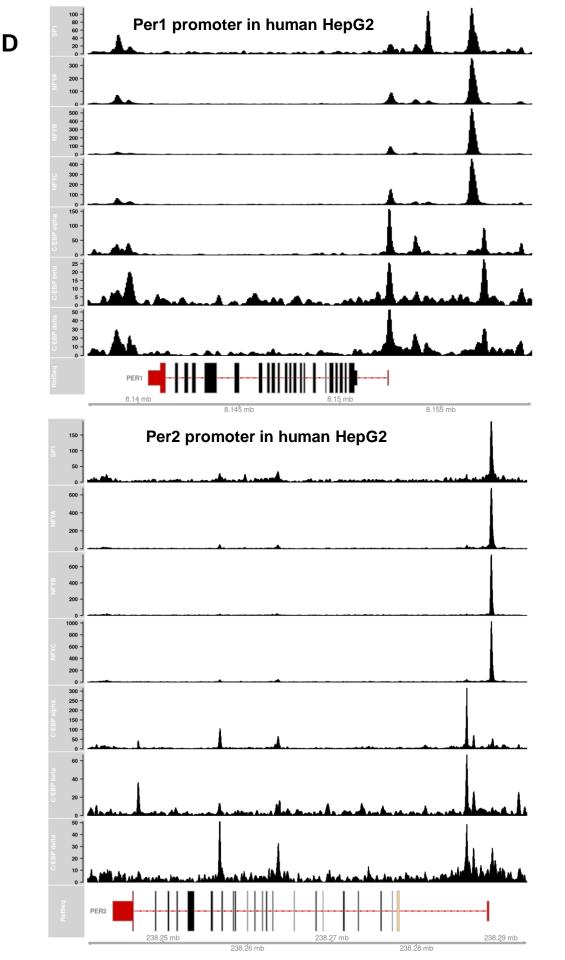
Accession Number	Cell/Tissue	TFs
ENCFF659QAR	Hep2G	NFYA
ENCFF062IKU	Hep2G	NFYB
ENCFF117DNV	Hep2G	NFYC
ENCFF460NRJ	Hep2G	C/EBPalpha
ENCFF000XQN	Hep2G	C/EBPbeta
ENCFF616JYP	Hep2G	C/EBPdelta
ENCFF517LOQ	Hep2G	SP1
GSE52496	ESC	SP1
GSE69099	ESC	C/EBPbeta
GSE56839	ESC	NFYA, NFYB, NFYC
GSE27826	3T3-L1	C/EBPbeta, C/EBPdelta

91.42 mb

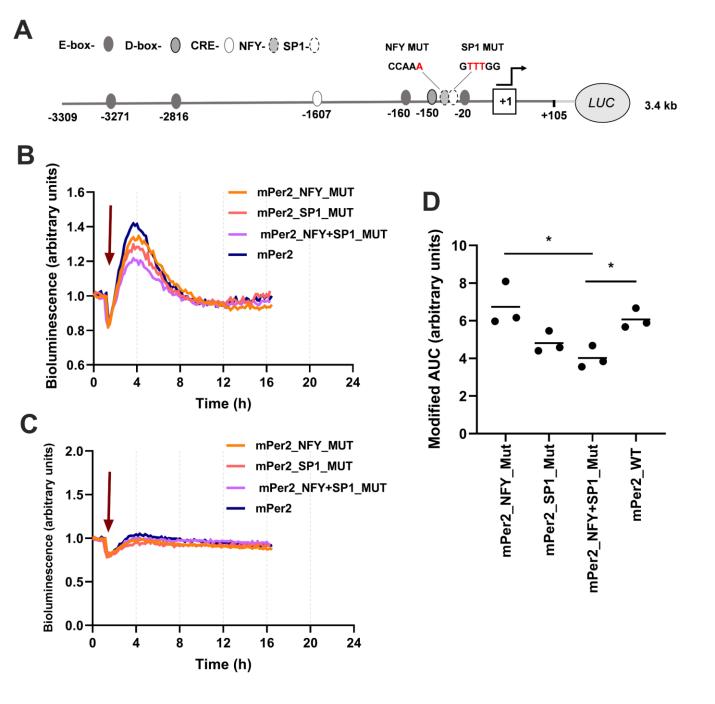
В

Α




91.43 mb

91.4<u>4</u> mb


91.45 mb

91.46 mb

Supplemental Figure 9. ChIP-Seq analysis of Per1 and Per2 promoter regions for NFY, SP1 and C/EBP transcription factors. (A) Accession IDs from Encode (ENCFF) and GEO (GSE) databases for selected transcription factors. (B) Promoter analysis of mouse 3T3-L1 cells. (C) Promoter analysis of mouse embryonic stem cells (ESC). (D) Promoter analysis of human HepG2 cells.

Supplemental Figure 10. Insulin-inducible expression from the mPer2 promoter is NFY and SP1 dependent. (A) Schematic representation of the mPer2 promoter luciferase reporter construct with the potential binding sites for NFY (CCAAT) and SP1 (GGGCGG) are shown using a dashed line. LUC: luciferase,+1 represent the transcriptional starting site. (**B and C**) Bioluminescence recordings of 3T3-L1 preadipocytes harboring the mPer2- or the mPer2-NFY-MUT/mPer2-SP1-MUT/mPer2-NFY+SP1-MUT promoter luciferase reporter construct (one representative experiment is shown). Cells were stimulated with either (**B**) 100 nM insulin (n=3 technical replicates) or (**C**) solvent (n=3 technical replicates) (time of stimulation indicated by the red arrow). (**D**) Quantification of area under the induction curve (AUC) (n=3 biological replicates). *p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with multiple comparison test.