
Supplementary 1. Development of the Deep-Learning System 

Multi-task Convolutional Neural Networks 

For this study, we designed two versions of a multi-task CNN to process the OCT data obtained 

from different OCT devices. We built a 3D multi-task CNN for analyzing 3D volume-scans 

imaged by Cirrus OCT, and a 2D multi-task CNN for analyzing a series of 2D B-scans imaged 

by Spectralis OCT and Triton OCT.(1) For both 3D and 2D CNNs, we employed the residual 

network (ResNet) as the backbone. For the 3D CNN, we used a 3D version of ResNet-34 with 

the last fully connected layer removed as the feature extraction module; we halved the number of 

feature maps in the original setting to reduce computational costs. For the 2D CNN, we 

employed ResNet-18 with the last fully connected layer removed as the feature extraction 

module. 

The fully connected layer with softmax activation accepted features from the feature extraction 

module and output class probabilities in the other two modules. We trained both our 3D network 

and our 2D network by minimizing the objective function L, as shown below: 
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Regarding the equations above, LDME is the cross-entropy loss for the DME classification task, 

and LABN is the binary cross-entropy loss for the abnormality classification task.  = 8 represents 

the model parameters, x is the input image, and yDME and yABN are the corresponding labels for 

DME and abnormality respectively. C is the number of classes (i.e., 3) for the DME 

classification task. A regularization term W was added to the objective function to prevent the 



problem of overfitting. λ controlled the trade-off between the loss terms and the regularization 

term, with a set value of 3×10–5. 

Our CNNs were implemented using Keras package (https://keras.io/) and Python, working on a 

workstation equipped with a 3.5 GHz Intel Core i7-5930K CPU and Nvidia GeForce GTX 

Titan X GPUs. We set the learning rate at 0.0001, and optimized the weights of the networks 

using the Adam stochastic gradient descent algorithm. 

The predictions made by the 3D CNN are at the volume-scan level, whereas those made by the 

2D CNN are at the B-scan level. To obtain subsequent “volume-scan” level results for Spectralis 

OCT and Triton OCT using the 2D CNN, we applied a presence-based strategy: (1) If any B-

scans are predicted as CI-DME, the whole scan is classified as CI-DME; (2) if (1) does not hold 

and at least one B-scan is predicted as non-CI-DME, the whole scan is classified as non-CI-

DME; (3) if both (1) and (2) do not hold, the whole scan is classified as non-DME. 

Data pre-processing and data augmentation 

For the 3D volume-scans obtained from Cirrus OCT, we first applied Otsu’s method,(2) a 

traditional automatic image thresholding algorithm, to obtain the region of interest (ROI) in the 

volumetric data (i.e., the retinal area). Applying Otsu’s method caused the network to focus more 

on learning discriminative patterns without disturbances from other irrelevant areas, dramatically 

reducing the computational cost. We set the input size of our 3D DL system to 128 × 512 × 512, 

applying random cropping or zero padding to the ROIs during the pre-processing phase.  

For the 2D OCT B-scans obtained from Spectralis OCT and Triton OCT, we set the input sizes 

of our 2D CNN system to 496 × 496 × 3 and 992 × 1024 × 3, respectively. We also applied 



resizing to the images obtained from Spectralis OCT, given that the device used two scanning 

protocols. 

We further applied standardization and normalization on all input data (both 3D volume-scans 

and 2D B-scans). Specifically, we standardized the input data to have zero mean and unit 

variance, and then normalized them to the range [0, 1],. In deep-learning scenario, it is very 

common to randomly split the dataset into training, testing and validation sets when the dataset is 

large since the overfitting problem can be prevented with adequate training samples. In this 

study, as shown in Table 1 we constructed three large-scale OCT datasets (i.e., with 3,788 

volumes in Cirrus OCT dataset, 30,515 B-scans in Spectralis OCT dataset, and 39,443 B-scans in 

Triton OCT dataset, respectively). We divided the primary dataset of the 3 OCT devices at 

random for training (60%), testing (20%) and primary validation (20%). It is worth mentioning 

that the random sampling was performed at patient level in order to prevent leakage and biased 

estimation of the performance on the primary validation sets. 

During the training phase, we used data augmentation techniques (i.e., random flipping at all 

axes) to enrich the training samples, which alleviated the overfitting problem. 

Heatmap Generation 

We used the established Class Activation Map (CAM)(3) technique to generate heatmaps, 

highlighting the discriminative object parts detected by the CNN model. The CAM of a 

particular class implies the informative image regions used by the CNN to identify that class. We 

backward-projected the weights of the output layer (predicted class scores) on to the 

convolutional feature maps ahead of the global average pooling layer. Each value at the spatial 

location denotes the unit of the presence of a specific visual pattern. Therefore, the CAM is 



exactly the weighted linear sum of these visual patterns at different spatial locations. As the 

CAM had a smaller size than that of the input image due to the convolution and pooling 

operations, we up-sampled the CAM to the original input size. In this manner, we could readily 

identify the image regions most relevant to the particular class. 

For better visualization, we used the Python library Matplotlib(4) to plot the CAM overlapping 

the corresponding original input B-scans by adjusting the transparency. In particular, for the 

OCT volume-scan imaged by the Cirrus device, we first produced the heatmaps of the B-scan 

images, then utilized Fiji—a popular image processing package bundling a range of plugins(5)—

to ensemble B-scan heatmaps from the same volume into a 3D heatmap.  
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