Appendix: Epigenome Wide Association Study Reveals Methylation Loci Associated with Offspring Gestational Diabetes Mellitus Exposure and Maternal Methylome

Supplementary Table 1: GDM case and control study design with pregnancies gro matched by age and BMI strata	-
Supplementary Table 2: Models used to investigate the two study hypotheses	
Supplementary Table 3: GDM EWAS results for offspring with p $<$ 0.05 (Full Tab EXCEL)	
Supplementary Table 4: GDM EWAS results for mothers with p $<$ 0.05 (Full table EXCEL)	
Supplementary Table 5: Details of methylation changes associated with gestational exposure	
Supplementary Figure 1: Probability-Probability plots for offspring EWAS	5
Supplementary Figure 2: Probability-Probability plots for mothers EWAS	6
Supplementary Figure 3: EWAS results for fixed effect GDM of the linear mixed rusing both offspring and mothers' methylome as response	
Supplementary Figure 4: Ubiquitous expression of <i>TFCP2</i> in different tissues usin	_
Supplementary Figure 6: Expression of <i>DLGAP2</i> in different tissues using GTEx	10
Supplementary Figure 7: Expression of <i>H3C6</i> in different tissues using GTEx	11
Supplementary Figure 8: Expression of FAM13A in different tissues using GTEx	12
Supplementary Figure 9: Expression of <i>UBE3C</i> in different tissues using GTEx	13

Supplementary Table 1: GDM case and control study design with pregnancies group-matched by age and BMI strata

Characteristic	≤ 24.9	≤ 24.9	25.0-29.9	25.0-29.9	≥ 30.0	≥ 30.0
Age of the mother (years)	Control	GDM	Control	GDM	Control	GDM
< 25	9 (1.7 %)	9 (1.7 %)	9 (1.7 %)	9 (1.7 %)	7 (1.3 %)	7 (1.3 %)
25-30	32 (6.0 %)	31 (5.8 %)	21 (3.9 %)	21 (3.9 %)	15 (2.8 %)	20 (3.7 %)
30-35	35 (6.5 %)	35 (6.5 %)	35 (6.5 %)	35 (6.5 %)	10 (1.9 %)	36 (6.7 %)
> 35	34 (6.3 %)	34 (6.3 %)	22 (4.1 %)	33 (6.2 %)	9 (1.7 %)	28 (5.2 %)

An equal number of controls were randomly chosen for each stratum. For older groups of women (> 30 years) with high pre-pregnancy BMI measures (\geq 30), there were insufficient numbers of women who were not affected by GDM. For these groups, all available controls were selected.

Supplementary Table 2: Models used to investigate the two study hypotheses

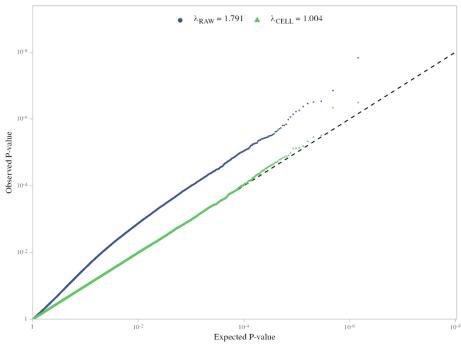
Model	Question addressed	Equation			
epigenetic effects	Are there epigenetic effects (differentially methylated DNA array probes) that are shared between mother and offspring as a result of exposure to GDM?	$\begin{aligned} \mathbf{M} &= \gamma \times \mathbf{GDM} + \beta_0 + \beta_1 \times \text{sex} + \beta_2 \times \text{log(birthweight)} \\ &+ \beta_3 \times \text{gestationalweek} + \beta_4 \times \text{mumwtgain} + \beta_5 \times \text{Bce} \\ &+ \beta_6 \times \text{CD4T} + \beta_7 \times \text{CD8T} + \beta_8 \times \text{Gran} + \beta_9 \times \text{Mono} \\ &\beta_{10} \times \text{NK} + \beta_{11} \times \text{nRBC} + \epsilon \end{aligned}$			
and and specific epigenetic effects	Offspring and maternal pooled data analysis: Is there a shared effect of GDM on the methylome of the offspring/mother pairs? Does GDM exposure have a differential impact upon offspring and their mothers? Is there a difference between the methylome of the offspring compared to the mothers?	$\begin{aligned} \mathbf{M}_{\epsilon} &= \gamma_{1} \times \mathbf{GDM} + \gamma_{2} \times \mathbf{GDM} \times \mathbf{S} + \gamma_{3} \times \mathbf{S} + \beta_{0i} + \\ \beta_{1} \times \mathbf{sex} + \epsilon_{i}, \\ \text{with S, the status of the individuals, } \textit{i.e., offspring or mother \end{aligned}$			
3. Offspring specific epigenetic effects	Are there differences in methylation between offspring born to mothers with GDM compared to offspring born to mothers without GDM? Specifically, is there a direct association between offspring methylation status and GDM exposure and/or association with GDM exposure modified by the methylome of the mothers?	$\begin{split} & M^{Offspring} = \gamma \times \textbf{GDM} + \gamma \times \textbf{GDM} \times \textbf{M}^{\textbf{Mothers}} + \\ & \gamma \times M^{\textbf{Mothers}} + \beta_0 + \ \beta_1 \times \text{sex} + \beta_2 \times \text{log(birthweight)} \\ & + \beta_3 \times \text{gestationalweek} + \beta_4 \times \text{Bcell} + \beta_5 \times \text{CD4T} + \\ & \beta_6 \times \text{CD8T} + \beta_7 \times \text{Mono} + \beta_8 \times \text{NK} + \epsilon, \end{split}$ with the covariate $M^{\textbf{Mothers}}$ above being the residuals (ϵ) from the following linear model: $ M^{\textbf{Mothers}} = \beta_0 + \beta_1 \times \text{age} + \beta_2 \times \text{BMI} + \\ & \beta_3 \times \text{mumwtgain} + \beta_4 \times \text{Bcell} + \beta_5 \times \text{CD4T} + \\ & \beta_6 \times \text{CD8T} + \beta_7 \times \text{Mono} + \beta_8 \times \text{NK} + \beta_9 \times \text{Neu} + \epsilon. \end{split}$ Offspring/mother M pairs were retained for those following a distribution of $Q_{25}(M) - 3 \times \text{IQR}(M) \leq M $ $\leq Q_{75}(M) + 3 \times \text{IQR}(M)$			

Supplementary Table 3: GDM EWAS results for offspring with p < 0.05 (Full Table in EXCEL)

Supplementary Table 4: GDM EWAS results for mothers with p < 0.05 (Full table in EXCEL)

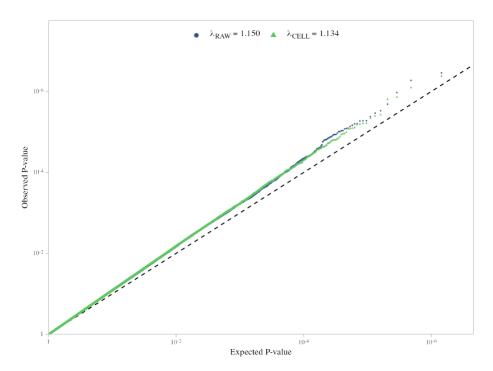
Supplementary Table 5: Details of methylation changes associated with gestational GDM exposure

Term^I	CpG ID	Estimate (M) ²	Estimate (β) ²	Average β _{value}	Number of Mother/Offspring Pair ³	P-Value⁴	FDR	Relation to CpG Island	Gene	Location in Gene
GDM	cg22790973	-1.56 ± 0.271	-0.00251 ± 0.00170	1.03 %	401	1.90×10^{-8}	1.38×10^{-2}	Island	TFCP2	TSS1500
$GDM \times Mother \\$	cg22790973	0.528 ± 0.0826	0.0579 ± 0.140	1.03 %	401	4.96×10^{-10}	3.59×10^{-4}	Island	TFCP2	TSS1500
$GDM \times Mother \\$	cg03456133	0.569 ± 0.0949	0.775 ± 0.0762	96.48 %	498	4.02×10^{-9}	1.46×10^{-3}	Open Sea	_	_
$GDM \times Mother \\$	cg19107264	0.574 ± 0.102	0.486 ± 0.0877	96.64 %	502	3.05×10^{-8}	7.37×10^{-3}	South Shelf	DLGAP2	Body
$GDM \times Mother \\$	cg23355087	-0.473 ± 0.0851	-0.602 ± 0.0712	95.66 %	484	4.55×10^{-8}	8.24×10^{-3}	Open Sea	_	_
$GDM \times Mother \\$	cg20002843	-0.295 ± 0.0537	-0.347 ± 0.0616	47.37 %	503	6.68×10^{-8}	9.68×10^{-3}	Open Sea	LOC127841	Body
$GDM \times Mother \\$	cg24440941	-0.496 ± 0.0917	-0.482 ± 0.168	1.48 %	492	1.03×10^{-7}	1.24×10^{-2}	North Shore	H3C6	TSS1500
$GDM \times Mother \\$	cg17065901	0.600 ± 0.113	0.751 ± 0.0722	98.25 %	498	1.70×10^{-7}	1.76×10^{-2}	Open Sea	FAM13A	Body
$GDM \times Mother \\$	cg11493553	-0.509 ± 0.0975	-0.663 ± 0.0944	97.07 %	478	2.66×10^{-7}	2.41×10^{-2}	Open Sea	UBE3C	Body

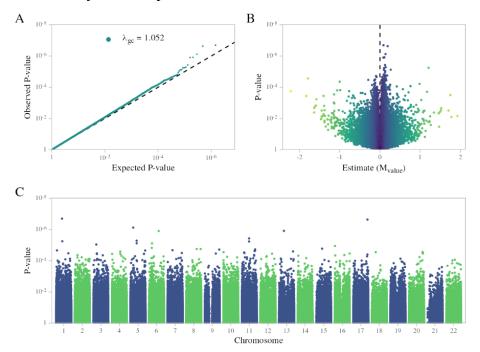

 $^{^{}T}$ Variable term or interaction term from the linear regression, where "Mothers" is the methylation of the mothers as M_{value}

 $^{^2}$ Linear regression coefficient plus/minus standard error on the M_{value} or β_{value} scale.

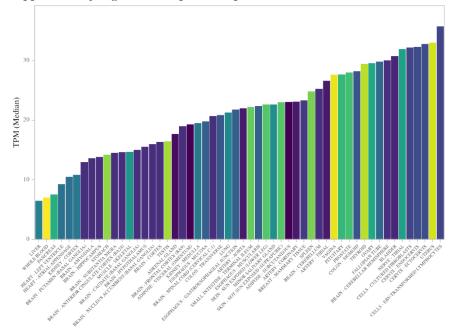
 $^{^3}$ Number of Mother/Offspring pair after outliers exclusion, with M_{value} greater than 3 times the interquartile range below the 25^{th} percentile and lower than 3 times the interquartile range above the 75^{th} percentile.


 $^{^4}$ Linear regression p-value computed on the M_{value} scale.

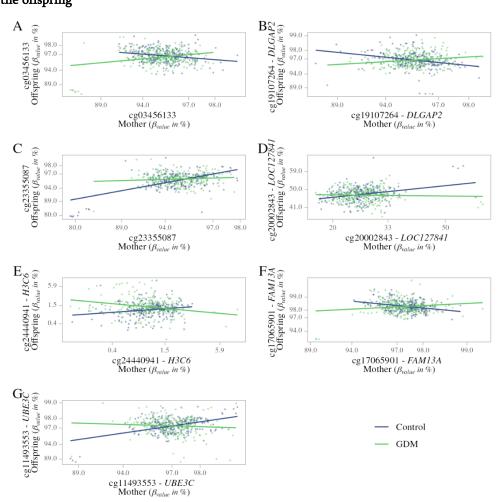
Supplementary Figure 1: Probability-Probability plots for offspring EWAS


Probability-Probability plots for offspring EWAS. Linear regression between offspring methylation and maternal GDM exposure, adjusted for sex, gestational week, birthweight with or without cell composition.

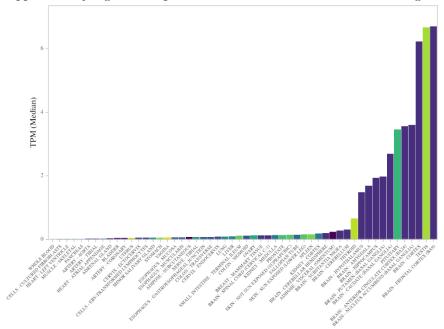
Supplementary Figure 2: Probability-Probability plots for mothers EWAS


Probability-Probability plots for mothers EWAS. Linear regression between maternal methylation and maternal GDM exposure, adjusted for age and BMI with or without cell composition.

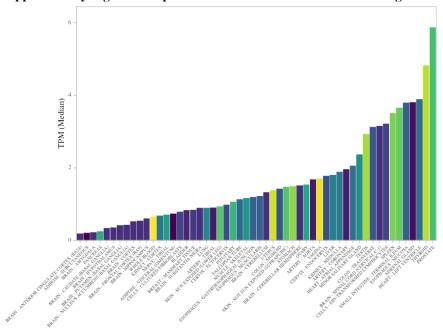
Supplementary Figure 3: EWAS results for fixed effect GDM of the linear mixed model using both offspring and mothers' methylome as response


EWAS results for fixed effect GDM of the linear mixed model using both offspring and mothers' methylome as response. A) Probability-Probability plot of the GDM exposure fixed effect on the methylation of both offspring and mothers, with the black line indicating the expected distribution. B) A volcano plot and C) Manhattan plot, showing the genome-wide results for all the CpGs.

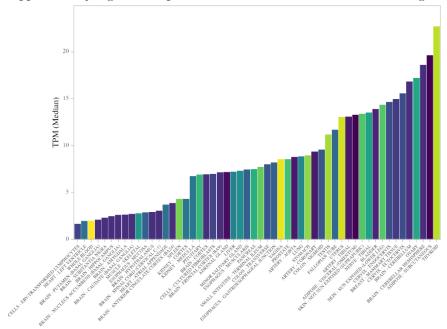
Supplementary Figure 4: Ubiquitous expression of TFCP2 in different tissues using GTEx


Ubiquitous expression of *TFCP2* **in different tissues using GTEx.** The global expression pattern of *TFCP2* shows a ubiquitous expression pattern.

Supplementary Figure 5: GpGs with a GDM exposure interaction with maternal methylation on the methylation of the offspring


Seven CpGs with a significant GDM exposure interaction with mother methylation on the methylation of the offspring. Scatterplots showing the differences in methylation between offspring and mother according to the maternal GDM exposure in the A) cg03456133 located within an intergenic region, B) cg19107264 in *DLGAP2* gene, C) cg17065901 in *FAM13A* gene, D) cg2335508 located within an intergenic region and E) cg24440941 in *H3C6*, F) cg20002843 located in *LOC127841* gene body and G) cg11493553 in *UBE3C*.

Supplementary Figure 6: Expression of *DLGAP2* in different tissues using GTEx


Expression of *DLGAP2* **in different tissues using GTEx.** The global expression pattern of *DLGAP2* from GTEx shows an expression pattern in brain.

Supplementary Figure 7: Expression of H3C6 in different tissues using GTEx

Expression of *H3C6* **in different tissues using GTEx.** The global expression pattern of *H3C6* from GTEx shows an expression pattern in brain.

Supplementary Figure 8: Expression of FAM13A in different tissues using GTEx

Expression of *FAM13A* **in different tissues using GTEx.** The global expression pattern of *FAM13A* from GTEx shows an expression pattern in brain.

Supplementary Figure 9: Expression of *UBE3C* in different tissues using GTEx

Expression of *UBE3C* **in different tissues using GTEx.** The global expression pattern of *UBE3C* from GTEx shows an expression pattern in brain.