<u>Manuscript Title</u>: Diabetic kidney disease alters the transcriptome and function of human adipose-derived mesenchymal stromal cells but maintains immunomodulatory and paracrine activities important for renal repair

Supplemental Materials

MSC Harvesting and Phenotyping Methods

MSC were isolated from abdominal subcutaneous fat (0.5-2 g), cultured, and characterized as previously described. 1-5 In brief, adipose tissues were minced and digested in 2% collagenase type I at 37°C for 45 minutes (Gibco, NY). Afterward, the suspension was filtered through a 100 µm cell strainer (BD Biosciences, San Jose, CA) to remove remaining tissue pieces and then centrifuged at 1000 RPM for 5 minutes (233 relative centrifugal force) to pellet cells. Cells were cultured in Advanced minimumessential-medium (MEM; Thermo Fisher Scientific, Waltham, MA) supplemented with 5% platelet lysate (PLTMax, Mill Creek Life Sciences, Rochester, MN) and 2 mM Lglutamine (Invitrogen, Carlsbad, CA) in a 37°C incubator with 5% CO₂ incubator for 3–4 days. When 60-80% confluent, cells were passaged using TrypLE (Trypsin-like Enzyme, Invitrogen). The 3rd passage was collected and kept in Gibco Cell Culture Freezing Medium (Life Technologies, Carlsbad, CA) at -80°C. Cells were then characterized⁶ by surface marker positivity to CD73, CD90, CD105, and negativity to CD34 and CD45 (according to the manufacturer's recommended dilution; Abcam, Cambridge, MA; BD Pharmigen, San Jose, CA; BioLegend, San Diego, CA) and analyzed by flow cytometry (FlowSight, Amnis, Seattle, WA) using Amnis® Image Data Exploration and Analysis Software (IDEAS v.6.2). MSC phenotype was further confirmed by trilineage differentiation into osteocyte (mouse anti-human osteocalcin), adipocyte (goat anti-mouse FABP-4 antibody), and chondrocyte (goat anti-human

aggrecan antibody) lineages using a Human MSC Functional identification kit (R&D Systems, Minneapolis, MN) following manufacturer's instructions.

<u>Supplemental Table 1.</u> Demographic characteristics of participants with diabetic kidney disease and controls at time of adipose tissue sampling for mesenchymal stem/ stromal cell harvest -Migration and Proliferation subset

MSC Migration and Proliferation						
	Controls	DKD	p-value			
	n=16	n=38				
Age, years	63.3 (3.4)	64.8 (6.8)	0.12			
Female Sex	9 (56.3%)	17 (44.7%)	0.44			
White Race	16 (100%)	33 (86.8%)	0.51			
Diabetes Type 1		8 (21.1%)				
Diabetes Type 2		30 (78.9%)				
Diabetes Duration, years		23.9 (16.0)				
BMI , kg/ m ²	29.8 (3.1)	34.1 6.0)	0.009			
eGFR, ml/min/1.73m ²	77.6 (12.5)	44.7 (19.7)				
Glucose, mg/dL	108.6 (20.0)	167.0 (64.8)				
HbA1c, %		7.8 (1.2)				
UACR, mg/g		507.5 (1202.0)				
Anti-Diabetes therapy*						
Insulin only		25 (65.8%)				
Oral/other		22 (57.9%)				
Insulin+Oral/Other		11 (28.9%)				
Data are mean (SD) or n (%)						

BMI: body mass index; DKD: diabetic kidney disease; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; UACR: urine albumin:creatinine ratio: random sample; Rx: therapy; ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; NGSP HbA1c converter http://www.ngsp.org/convert1.asp can be used to calculate HbA1c values from % to mmol/mol.*Values do not add up to 100% of sample total.

HbA1c 7.8 % NGSP = 62 mmol/mol IFCC = 177 mg/dL eAG = 9.8 mmol/l eAG Change or SD of 1.20 % NGSP = 13.1 mmol/mol IFCC = 34.4 mg/dL eAG = 1.91 mmol/l eAG

<u>Supplemental Table 2.</u> Demographic characteristics of participants with diabetic kidney disease and controls at time of adipose tissue sampling for mesenchymal stem/ stromal cell harvest – MSC RNA Sequencing subset

MSC RNA Sequencing					
	Controls	DKD	p-value		
	n=9	n=29			
Age, years	63.9 (3.9)	65.4 (8.0)	0.2		
Female Sex	4 (44.4%)	9 (31.0%)	0.46		
White Race	9 (100%)	24 (82.8%)	0.41		
Diabetes Type 1		3 (10.3%)			
Diabetes Type 2		26 (89.7%)			
Diabetes Duration, years		20.7 (13.8)			
BMI, kg/ m ²	28.8 (3.63)	35.4 (5.8)	0.004		
eGFR, ml/min/1.73m ²	80.5 (8.5)	39.0 (15.5)			
Glucose, mg/dL	112.2 (18.5)	179.3 (87.2)			
HbA1c, %		7.9 (1.3) [^]			
UACR, mg/g		585.3 (1307.8)			
Data are mean (SD) or n (%)		·			

BMI: body mass index; DKD: diabetic kidney disease; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; UACR: urine albumin:creatinine ratio: random sample; Rx: therapy; ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; NGSP HbA1c converter http://www.ngsp.org/convert1.asp can be used to calculate HbA1c values from % to mmol/mol.

HbA1c 7.9 % NGSP = 63 mmol/mol IFCC = 180 mg/dL eAG = 10.0 mmol/l eAG Change or SD of 1.30 % NGSP = 14.2 mmol/mol IFCC = 37.3 mg/dL eAG = 2.07 mmol/l eAG

<u>Supplemental Table 3.</u> Demographic characteristics of participants with diabetic kidney disease and controls at time of adipose tissue sampling for mesenchymal stem/ stromal cell harvest – MSC Conditioned Medium subset

MSC Conditioned Medium					
	Controls	DKD	p-value		
	n=10	n=38	•		
Age, years	63.6 (3.1)	65.1 (6.9)	0.2		
Female Sex	6 (60.0%)	17 (44.7%)	0.39		
White Race	10 (100%)	33 (86.8%)	0.69		
Diabetes Type 1		8 (21.1%)			
Diabetes Type 2		30 (78.9%)			
Diabetes Duration , years		23.9 (16.0)			
BMI, kg/ m ²	30.7 (2.9)	34.1 6.0)	0.08		
eGFR , ml/min/1.73m ²	75.3 (13.6)	44.7 (19.7)			
Glucose, mg/dL	111.6 (20.4)	167.0 (64.8)			
HbA1c, %	 ′	7.8 (1.2)			
UACR, mg/g		507.5 (1202.0)			
Data are mean (SD) or n (%)		· ·			

BMI: body mass index; DKD: diabetic kidney disease; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; UACR: urine albumin:creatinine ratio: random sample; Rx: therapy; ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; NGSP HbA1c converter http://www.ngsp.org/convert1.asp can be used to calculate HbA1c values from % to mmol/mol.

HbA1c 7.8 % NGSP = 62 mmol/mol IFCC = 177 mg/dL eAG = 9.8 mmol/l eAG Change or SD of 1.20 % NGSP = 13.1 mmol/mol IFCC = 34.4 mg/dL eAG = 1.91 mmol/l eAG

Supplemental Table 4. Demographic characteristics of participants with diabetic kidney disease and controls at time of adipose tissue sampling for mesenchymal stem/ stromal cell harvest – MSC Senescence Associated (SA)-β-galactosidase Activity subset

MSC SA-β-galactosidase (SA β-gal) activity					
	Controls	DKD	p-value		
	n=14	n=27	-		
Age, years	63.6 (3.4)	64.3 (7.8)	0.46		
Female Sex	7 (50.0%)	10 (37.0%)	0.42		
White Race	14 (100%)	22 (81.5%)	0.23		
Diabetes Type 1		14 (14.8%)			
Diabetes Type 2		23 (85.2%)			
Diabetes Duration, years		20.7 (13.9)			
BMI, kg/ m ²	29.7 (3.3)	35.8 (5.8)	0.0006		
eGFR, ml/min/1.73m ²	77.7(11.8)	38.7 (16.1)			
Glucose, mg/dL	108.6 (21.2)	172.4 (72.5)			
HbA1c, %	′	8.0 (1.3) ´			
UACR, mg/g		581.1 (1335.9)			
Data are mean (SD) or n (%)		·			

BMI: body mass index; DKD: diabetic kidney disease; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; UACR: urine albumin:creatinine ratio: random sample; Rx: therapy; ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin receptor blocker; NGSP HbA1c converter http://www.ngsp.org/convert1.asp can be used to calculate HbA1c values from % to mmol/mol.

HbA1c 8.0 % NGSP = 64 mmol/mol IFCC = 183 mg/dL eAG = 10.2 mmol/l eAG Change or SD of 1.30 % NGSP = 14.2 mmol/mol IFCC = 37.3 mg/dL eAG = 2.07 mmol/l eAG

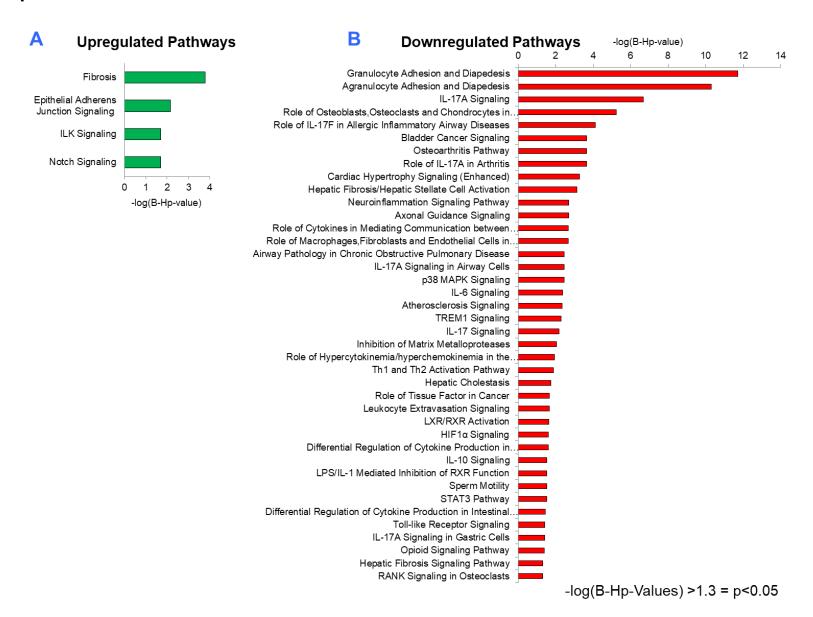
<u>Supplemental Table 5</u>. Univariate comparison between MSC *in vitro* studies and gender among participants with diabetic kidney disease (DKD)

MSC studies in participants with DKD			
In vitro Study	Gen		
	Females	Males	p value
MSC Function	N=19	N=30	
Migration	0.51 (0.12)	0.51 (0.11)	0.8
Proliferation	0.39 (0.04)	0.38 (0.05)	0.4
MSC Secretome	N=19	N=29	
Proangiogenesis, Anti-apoptosis, Antifibrosis			
VEGF-A	2069.19 (1092.50)	2345.90 (1931.04)	0.8
HGF	4560.90 (3013.77)	4676.14 (3274.47)	0.9
SDF	97.02 (101.02)	144.58 (119.25)	0.3
Immunomodulatory			
IDO	0.27 (0.16)	0.29 (0.18)	0.9
PGE2	1.68 (1.11)	1.58 (1.11)	0.8
IL-6	1261.73 (350.56)	1214.60 (369.62)	0.6
MSC Senescence	N=10	N=17	
SA-β-gal	25186.55 (2765.60)	25101.79 (2502.17)	0.9
Data are mean (SD)			

*PGE2 (n=10 Female; n=14 Male). VEGF: vascular endothelial growth factor; HGF: hepatocyte growth factor; SDF: stromal cell derived factor-1 (or CXCL12); IDO: indoleamine 2,3 deoxygenase-1; PGE2: prostaglandin E2; IL: interleukin; SA- β -gal: senescence-associated beta-galactosidase; UACR: Urine albumin:creatinine ratio (per mg/g creatinine). Units of measurement: ng/mL for all IDO, PGE2, and activin A; pg/mL for VEGF-A, VEGF-C, HGF, and IL-6. Other studies are expressed as OD: optical density (Migration), ABS 490: Absorbance 490 nm wavelength (Proliferation); and RFU: relative fluorescence unit (SA- β -gal). Additional studies: epithelial growth factor (angiogenic), bone morphometric protein-7 (anti-fibrosis), and TNF α (proinflammatory) were undetectable in culture medium by ELISA/Luminex.

<u>Supplemental Table 6</u>. Univariate comparison between MSC *in vitro* studies and diabetes type or metformin use among participants with diabetic kidney disease (DKD)

MSC studies in participants wit							
<i>In vitro</i> Study	Diabetes Type		Metformin Therapy				
	Type 1	Type 2	p value	Non-Use	Use	p value	
MSC Function	N=10	N=39		N=33	N=16		
Migration	0.54 (0.13)	0.50 (0.11)	0.3	0.51 (0.12)	0.51 (0.09)	0.7	
Proliferation	0.39 (0.04)	0.38 (0.05)	0.5	0.38 (0.05)	0.40 (0.04)	0.1	
MSC Secretome	N=10	N=38		N=32	N=16		
Proangiogenesis, Anti- apoptosis, Antifibrosis							
VEGF-A	1970.44 (1168.02)	2306.35 (1752.22)	0.6	2150.12 (1352.11)	2408.85 (2150.72)	0.8	
HGF	4306.34 (3452.41)	4715.83 (3097.06)	0.7	4849.51 [°] (3036.42)	4192.55 (3396.83)	0.4	
SDF	111.75 (87.37)	133.37 (124.17)	0.7	143.75 (106.10)	87.09 (127.00)	0.1	
Immunomodulatory	(07.37)	(124.17)		(100.10)	(127.00)		
IDO	0.25 (0.26)	0.30 (0.14)	0.07	0.28 (0.19)	0.30 (0.12)	0.4	
PGE2*	0.56 (0.28)	1.77 (1.08)	0.2	1.53 (1.17)	1.75 (1.00)	0.7	
IL-6	1027.82 (308.74)	1287.31 (355.34)	0.06	1176.37 (347.11)	1347.02 (366.71)	0.2	
MSC Senescence	N=4	N=23		N=10	N=17		
SA-β-gal	26904.38 (2270.54)	24825.15 (2512.32)	0.1	25868.18 (2555.24)	23883.70 (2102.69)	0.03	
Data are mean (SD)	,						


*PGE2 (n=3 Type 2; n=21 Type2; n=14 Metformin Non-Use; n=10 Use). VEGF: vascular endothelial growth factor; HGF: hepatocyte growth factor; SDF: stromal cell derived factor-1 (or CXCL12); IDO: indoleamine 2,3 deoxygenase-1; PGE2: prostaglandin E2; IL: interleukin; SA- β -gal: senescence-associated beta-galactosidase; UACR: Urine albumin:creatinine ratio (per mg/g creatinine). Units of measurement: ng/mL for all IDO, PGE2, and activin A; pg/mL for VEGF-A, VEGF-C, HGF, and IL-6. Other studies are expressed as OD: optical density (Migration), ABS 490: Absorbance 490 nm wavelength (Proliferation); and RFU: relative fluorescence unit (SA- β -gal). Additional studies: epithelial growth factor (angiogenic), bone morphometric protein-7 (antifibrosis), and TNFα (proinflammatory) were undetectable in culture medium by ELISA/Luminex.

<u>Supplemental Table 7</u>. Univariate correlation coefficients between MSC *in vitro* studies and patient characteristics among Control participants

MSC studies in Controls									
In vitro Study	Age		BN	BMI (Glucose		eGFR	
	r _s	p- value							
MSC Function									
Migration	0.182	0.5	-0.144	0.6	-0.293	0.3	-0.292	0.3	
Proliferation	0.379	0.1	-0.049	0.9	-0.055	0.08	-0.028	0.9	
MSC Secretome									
Proangiogenesis, Anti-apoptosis, Antifibrosis VEGF-A	0.544	0.1	-0.661	0.04	0.311	0.4	-0.200	0.6	
HGF	0.030	0.1	-0.709	0.04	0.433	0.4	-0.212	0.6	
SDF	0.240	0.5	-0.294	0.02	0.433	0.2	-0.587	0.07	
Immunomodulatory									
IDO	-0.671	0.04	0.558	0.09	-0.179	0.6	0.018	0.9	
PGE2	-0.006	0.9	0.467	0.2	-0.409	0.2	0.709	0.02	
IL-6	-0.106	0.8	-0.127	0.7	0.030	0.9	-0.261	0.5	
MSC Senescence									
SA-β-gal	-0.372	0.2	0.125	0.7	0.018	0.9	0.305	0.3	

Migration and proliferation n=16, SA- β -gal activity: n=14; all MSC secretome studies n=10. Age (per year); BMI: body mass index (per kg/m²), glucose (per g/dL); eGFR: estimated glomerular filtration rate (per mL/min/1.73m²); UACR urine albumin:creatinine (per mg/g); eGFR: estimated glomerular filtration rate (per mL/min/1.73m²); UACR (per mg/g); r_s: Spearman's Rank Correlation coefficient; VEGF: vascular endothelial growth factor; HGF: hepatocyte growth factor; SDF: stromal cell derived factor-1 (or CXCL12); IDO: indoleamine 2,3 deoxygenase-1; PGE2: prostaglandin E2; IL: interleukin; SA- β -gal: senescence-associated beta-galactosidase; UACR: Urine albumin:creatinine ratio (per mg/g creatinine). Units of measurement: ng/mL for all IDO, PGE2, and activin A; pg/mL for VEGF-A, VEGF-C, HGF, and IL-6. Other studies are expressed as OD: optical density (Migration), ABS 490: Absorbance 490 nm wavelength (Proliferation); and RFU: relative fluorescence unit (SA- β -gal). Additional studies: epithelial growth factor (angiogenic), bone morphometric protein-7 (anti-fibrosis), and TNFα (proinflammatory) were undetectable in culture medium by ELISA/Luminex.

<u>Supplemental Figure 1</u>. Upregulated and Downregulated Ingenuity Pathways for Differentially Expressed MSC Genes

<u>Supplemental Figure 1 Legend</u>. Functional annotation clustering analyses were performed in differentially expressed MSC genes consisting of **A**) upregulated (n=4) and **B**) downregulated (n=40) pathways with statistical significance. –log(B-H pvalues) >1.3 represent pathways with p<0.05. ILK (integrin-linked kinase); IL-17A (interleukin-17A); IL-17F (interleukin-17F); MAPK (mitogen-activated protein kinases); IL-6 (interleukin-6); TREM1 (triggering receptor expressed on myeloid cells 1); IL-17 (interleukin-17); Th1 (T helper type 1); Th2 (T helper type 2); LXR/RXR (liver X receptors and retinoid X receptors); HIF1α (hypoxia inducible factor 1α); IL-10 (interleukin-10); LPS/IL-1 (lipopolysaccharide/ interleukin-1); STAT3 (signal transducer and activator of transcription 3); RANK (receptor activator of nuclear factor κ B)

REFERENCES:

- 1. Eirin A, Zhu XY, Krier JD, et al. Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. *Stem cells (Dayton, Ohio)*. 2012;30(5):1030-1041.
- 2. Eirin A, Zhu XY, Puranik AS, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation. *Kidney international*. 2017;92(1):114-124.
- 3. Zhu XY, Ma S, Eirin A, et al. Functional Plasticity of Adipose-Derived Stromal Cells During Development of Obesity. *Stem cells translational medicine*. 2016;5(7):893-900.
- 4. Saad A, Dietz AB, Herrmann SMS, et al. Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. *Journal of the American Society of Nephrology: JASN.* 2017;28(9):2777-2785.
- 5. Saad A, Zhu XY, Herrmann S, et al. Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. *Stem cell research & therapy.* 2016;7(1):128.
- 6. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy*. 2006;8(4):315-317.