Projecting the Incidence of Type 2 Diabetes-Related End-Stage Kidney Disease

until 2040: A Comparison between the Effects of Diabetes Prevention and

Treatment

Jedidiah I Morton, BSc(Hons), Stephen P McDonald, PhD, Agus Salim, PhD, Danny

Liew, PhD, Jonathan E Shaw, MD,[†] & Dianna J Magliano, PhD,[†].

[†]Co- senior authors.

Supplementary Appendix

Contents

Supplementary Text 1 – Description of data sources for model inputs and uncertainty in model parameters

Supplementary Text 2 – Estimation of sex, age and duration-specific ESKD incidence and all-cause mortality rates

Supplementary Text 3 – Detailed description of the model used to predict the lifetime risk of ESKD

Supplementary Text 4 – Detailed description of the model used to project the incidence of ESKD-D

Supplementary Text 5 – Assumptions for modelling ESKD incidence reductions with SGLT2i use

Supplementary Table 1 – Population Characteristics.

Supplementary Table 2 – Remaining lifetime risk of ESKD, to age 85 years, by age of onset of diabetes and sex.

Supplementary Table 3 – Number of incident diabetes cases expected and reduced by interventions between 2020 and 2040 under various modelled scenarios.

Supplementary Figure 1 – Number of annual incident diabetes-related end-stage kidney disease (ESKD-D) cases among people with type 2 diabetes in Australia, by current trajectory and different interventions.

Supplementary Text 1 – Description of data sources for model inputs and uncertainty in model parameters.

To estimate the ESKD incidence and all-cause mortality rates used for estimation of the lifetime risk of ESKD and projections of the incidence of ESKD-D, we used data derived from linkage of the National Diabetes Services Scheme (NDSS) to the Australia and New Zealand Dialysis and Transplant Registry (ANZDATA) and the Australian National Death Index (NDI) for 2002-2013, as previously described (1). Briefly, the NDSS was established by the Australian government in 1987 and includes 80-90% of people with diagnosed diabetes in Australia. For model data inputs, we used data from members with type 2 diabetes registered on the NDSS as of 1 January 2002 and all new registrants from this date until 31 December 2013. ANZDATA is a registry that collects data on all people who undergo kidney transplantation and/or dialysis, with complete coverage of all RRT units in Australia. ESKD was defined from ANZDATA as initiation of RRT. The NDI contains records of all registered deaths in Australia.

In the table below the values and sources of all model inputs are outlined, as well as assumed uncertainty distributions used in Monte Carlo simulations.

Input	Estimated value and standard error	Source
ESKD incidence rate in type 2 diabetes	Sex, age, and duration of diabetes-specific transition probability and standard error. Estimated via Poisson regression (Supplementary Text 2).	National Diabetes Services Scheme linked to the Australia and New Zealand Dialysis and Transplant Registry containing data from 2002- 2013.
Mortality rate in type 2 diabetes	Sex, age, and duration of diabetes-specific transition probability and standard error. Estimated via Poisson regression (Supplementary Text 2).	National Diabetes Services Scheme linked to the Australian National Death Index containing data from 2002-2013.
Incidence of type 2 diabetes in the Australian population	2.5 per 1000 Australian population. The standard deviation was assumed to be 10% of the point estimate (± 0.25 per 1000).	2.5 per 1000 population was the average incidence of type 2 diabetes from 2015-2019 in Australia.For this calculation the numerator was taken from the National Diabetes Services Scheme data

Table - Source of model inputs and uncertainty. Error distributions were assumed to be normal unless otherwise stated.

Future Australian population size	population proje	on estimates were used fo ctions were used for 2020 ed to be 5% of the point of 30-2040.	0-2040. The standard	 snapshots (2), the denominator was taken from the ABS population estimates (3). Actual population estimates came from the Australian Bureau of Statistics population estimates (3). Projected population estimates came from the Australian Bureau of Statistics population projections, series B (4).
Diabetes incidence reduction		on in diabetes incidence ((95% CI) among the	To estimate the proportional reduction in diabetes
with a sugar sweetened beverage tax	Australian popul		incidence for each age group, we compared the number of diabetes cases prevented in a modelling	
Develage tax	Age	Males	Females	study by Briggs et al. (5) to the actual incidence of
		Likely scenario	diabetes in the UK used in that study (6). For the	
	<18	7.9% (2.8-13.8)	5.4% (1.9-9.4)	best-case scenario, age-specific estimates for
	19-64	6.8% (2.4-11.8)	4.7% (1.7-8.2)	diabetes prevention were not publicly available, so we assumed that the age and sex-distribution of the
	≥65	2.7% (1.0-4.8)	2.5% (0.9-4.4)	effect was maintained proportionally to the likely scenario, which was true for all other interventions
		Best-case scenario	0	modelled in that study.
	<18	16.8% (6.2-29.1)	11.5% (4.2-19.9)	Similarly, the published uncertainty intervals by
	19-64	14.4% (5.2-24.9)	10.0% (3.6-17.3)	age were not publicly available, and so were
	≥65	5.8% (2.1-10.0)	5.4% (2.0-9.3)	assumed to be distributed proportionally among
Diabetes incidence reduction with a lifestyle modification program	Relative risk of developing type 2 diabetes: 0.71 (95% CI: 0.58- 0.88). Applied to 35% of adults with prediabetes under the likely scenario, and 50% of adults under the best-case scenario.			age groups. A meta-analysis of real-world diabetes prevention trials (7).

ESKD incidence reduction with wide-spread SGLT2i use	Relative risk of developing ESKD: 0.65 (95% CI: 0.53-0.81). Applied to 50% of people with an eGFR >45 ml/min/1.73m ² by 2023 under the likely scenario, and 70% of people with an eGFR >30 ml/min/1.73m ² by 2024 under the best-case scenario.	A meta-analysis of phase III clinical trials (8).
	> 50 mi/mill 1.75m by 2021 and of the best case sectority.	

References

1. Morton JI, Liew D, McDonald SP, Shaw JE, Magliano DJ. The Association Between Age of Onset of Type 2 Diabetes and the Long-term Risk of End-Stage Kidney Disease: A National Registry Study. Diabetes care. 2020;43(8):1788.

2. National Diabetes Scheme. Diabetes data snapshots. Available at: <u>https://www.ndss.com.au/about-the-ndss/diabetes-facts-and-figures/diabetes-data-snapshots/</u>. Accessed 14 Oct 2020. .

3. Australian Bureau of Statistics. National, state and territory population. Available at:

https://www.abs.gov.au/statistics/people/population/national-state-and-territory-population. Accessed 14 Oct 2020.

4. Australian Bureau of Statistics. Population Projections, Australia, 2017 (base) to 2066 (cat. no. 3222.0). Available at: <u>https://www.abs.gov.au/statistics/people/population/population-projections-australia/2017-base-2066</u>. Accessed 29 May 2020.

5. Briggs ADM, Mytton OT, Kehlbacher A, Tiffin R, Elhussein A, Rayner M, et al. Health impact assessment of the UK soft drinks industry levy: a comparative risk assessment modelling study. The Lancet Public Health. 2017;2(1):e15-e22.

6. Holden SH, Barnett AH, Peters JR, Jenkins-Jones S, Poole CD, Morgan CL, et al. The incidence of type 2 diabetes in the United Kingdom from 1991 to 2010. Diabetes, obesity & metabolism. 2013;15(9):844-52.

7. Galaviz KI, Weber MB, Straus A, Haw JS, Narayan KMV, Ali MK. Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose. Diabetes care. 2018;41(7):1526-34.

8. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. The lancet Diabetes & endocrinology. 2019;7(11):845-54.

Supplementary Text 2 – Estimation of sex, age and duration-specific ESKD incidence and all-cause mortality rates

Incidence of ESKD and mortality rates among people without ESKD as a function of sex, age and duration of diabetes were predicted in order to estimate the lifetime risk of ESKD, as well as project the incidence of ESKD, using a framework previously described (1). Briefly, National Diabetes Services Scheme registrants were followed from 1 January 2002 or date of registration, if later, until onset of ESKD, death, or end of follow-up on 31 December 2013. Registrants' follow-up (risk time and ESKD or deaths) was split into intervals of 6 months by current age (0-100 years), calendar time (2002–2013) and diabetes duration (0–40 years). Risk time and ESKD or deaths were then tabulated by current age, date of follow-up, and duration of diabetes, and each cell of the table was assigned age, date, and diabetes duration as continuous variables as the midpoint of the 6 month group. When date of diagnosis was not available for a participant, date of registration was used as a proxy. Data were analysed using a Poisson model, using spline effects of current age, diabetes duration and age at diagnosis, with a linear effect of calendar time. Separate models were fitted for the incidence of ESKD and all-cause mortality among those without ESKD. These models were fitted for males and females separately. Rates are then predicted for each attained age and duration of diabetes, by sex.

Reference

1. Huo L, Magliano DJ, Rancière F, Harding JL, Nanayakkara N, Shaw JE, et al. Impact of age at diagnosis and duration of type 2 diabetes on mortality in Australia 1997–2011. Diabetologia. 2018;61(5):1055-63.

Supplementary Text 3 – Detailed description of the model used to predict the lifetime risk of ESKD among adults with type 2 diabetes

Step 1: The model begins with a cohort at diagnosis of type 2 diabetes. For this example males diagnosed with type 2 diabetes at age 20 are used, but the methods are the same for any cohort followed from diagnosis of type 2 diabetes. At this stage the dataset looks as follows:

Sex Age N Male 20 100

Step 2: transition rates for ESKD are applied, based on the age, age at diagnosis of diabetes, and sex (Supplementary Text 2). Let these rates be denoted by TE, and the number developing ESKD at a given age be denoted N_ESKD (=N*TE). Let the total number who have developed ESKD since diagnosis of type 2 diabetes be denoted C_I (for cumulative incidence).

Sex	Age	Ν	TE	N_ESKD	C_I
Male	20	100	0.0001	0.01	0.01

To move forward, N_ESKD is subtracted from N, to track those who remain without ESKD, which is denoted N_EF (Number ESKD-free).

Sex	Age	Ν	TE	N_ESKD	C_I	N_EF
Male	20	100	0.0001	0.01	0.01	99.99

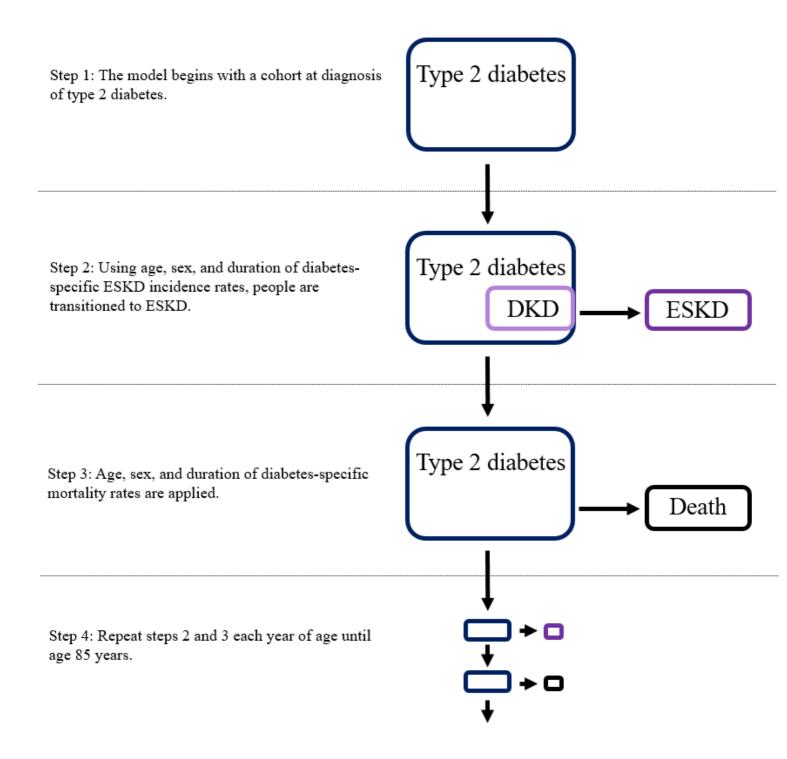
Step 3: transition rates for mortality are applied to people without ESKD. Let these rates be denoted by TM, and the number dying be denoted N_{EF*TM} .

Sex	Age	Ν	TE	N ESKD	CI	N EF	ТМ	N Death
Male	20	100	0.0001	0.01	0.01	99.99	0.002	0.2

The number of people who remain alive without ESKD at the end of the year is thus $N_EF - N_Death = N_Alive$.

Sex A	Age	Ν	TE	N ESKD	CI	N EF	MT	N Death	N_Alive
Male 2	20	100	0.0001	0.01	0.01	99.99	0.002	0.2	99.79

Step 4: The cohort is followed to age 85 years, repeating the process each year. The number entering the next year is the number who were alive without ESKD at the end of the previous year.


Sex Age	N	TE	N_ESKD	C_I	N_EF	MT	N_Death	N_Alive
Male 20	100	0.0001	0.01	0.01	99.99	0.002	0.2	99.79
Male 21	99.79	0.0002	0.02	0.03	99.77	0.004	0.4	99.37
Male 23	99.37	0.0003	0.03	0.06	99.34	0.005	0.5	98.84
Male 83	11.19	0.0055	0.06	29.4	11.13	0.161	1.8	9.33
Male 84	9.33	0.0046	0.04	29.5				

Thus, the lifetime risk of ESKD for males aged 20 at diagnosis of type 2 diabetes is 29.5%.

There is a specific and separate ESKD and mortality transition rate for each age, sex, and age at diagnosis combination, resulting from Poisson regression as outlined in Supplementary Text 2.

In the Monte Carlo simulations, transition probabilities were simulated before being applied.

The model is detailed schematically in the following figure:

Supplementary Text 4 – Detailed description of the model used to project the incidence of ESKD-D

The model begins with the NDSS population as at 1 January 2014, in terms of age, sex, and age at diagnosis of diabetes. At this stage the dataset looks as follows:

Sex	Age	Age_at_dx	Ν
Male	10	10	1
Male	11	10	3
Male	12	10	2
 M - 1 -	2 7	2.0	4 5
Male	37	29	45
Male	38	29	32
… Female	10	10	2
	τU	10	2
 Female	103	100	1

Where dx is short for diagnosis. In this dataset, N represents the number of individuals who fit each age/age at diagnosis category. For example, as at 1 January 2014, there were n=45 males aged 37 years who were diagnosed with type 2 diabetes at age 29 years registered on the NDSS. There is an age, sex, and age at diagnosis category for all NDSS registrants alive at 1 January 2014.

Step 1: transition rates for ESKD are applied, based on the age, age at diagnosis of diabetes, and sex (Supplementary Text 2). Let these rates be denoted by TE, and the number developing ESKD be denoted N_ESKD (=N*TE).

Sex	Age	Age at dx	Ν	TE	N ESKD
Male	10	10	1	0.00007	0.00007
Male	11	10	3	0.00008	0.00024
Male	12	10	2	0.00009	0.00018
Male	37	29	45	0.00062	0.02790
Male	38	29	32	0.00076	0.02432
Female	10	10	2	0.00006	0.00012
Female	103	100	1	0.00000	0.00000

The total number developing ESKD this year is thus the sum of the variable N_ESKD over the entire dataset. To move forward, N_ESKD is subtracted from N, to track those without ESKD only.

Sex Male Male Male	Age 10 11 12	Age_at_dx 10 10 10	N 0.99993 2.99976 1.99982
… Male Male	37 38	29 29	44.9721 31.9757
… Female	10	10	1.99988
… Female	103	100	1.00000

Step 2: transition rates for mortality are applied. Let these rates be denoted by TM, and the number dying be denoted N_Death (=N*TM).

Sex Male Male Male	Age 10 11 12	Age_at_dx 10 10 10	N 0.99993 2.99976 1.99982	TM 0.00124 0.00117 0.00114	N_Death 0.00124 0.00351 0.00228
… Male Male	37 38	29 29	44.9721 31.9757	0.00294 0.00314	0.13222 0.10040
 Female	10	10	1.99988	0.00021	0.00042
… Female	103	100	1.00000	0.64005	0.64005

These people are removed from the model by subtracting N_Death from N.

Sex Male Male	Age 10 11	Age_at_dx 10 10	N 0.99869 2.99625
Male	12	10	1.99754
… Male Male	37 38	29 29	44.8399 31.8753
… Female	10	10	1.99946
… Female	103	100	0.35995

Sex Male Male Male	Age 11 12 13	Age_at_dx 10 10 10	N 0.99869 2.99625 1.99754
… Male Male	38 39	29 29	44.8399 31.8753
… Female	11	10	1.99946
… Female	104	100	0.35995

Step 3: The population with type 2 diabetes is aged one year.

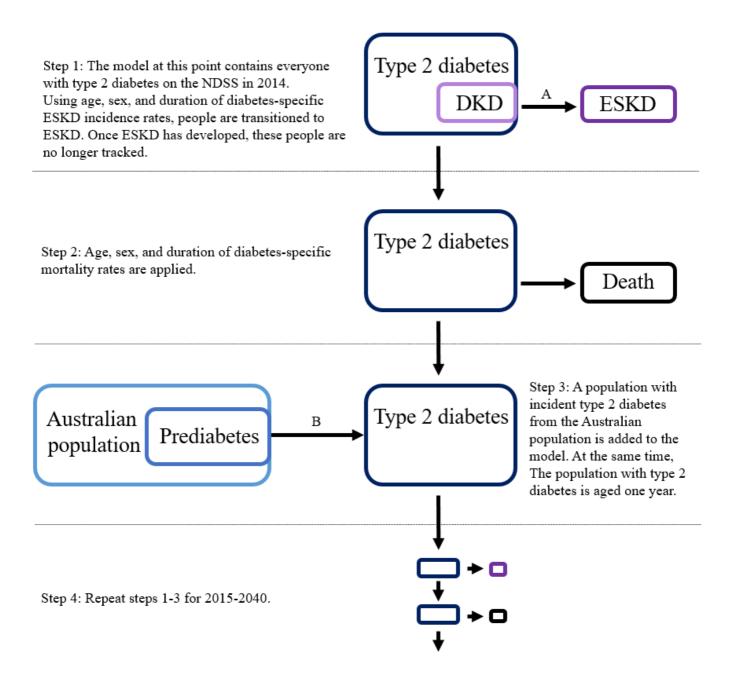
A population with incident type 2 diabetes is added.

Sex Male Male Male Male	Age 10 11 12 13	Age_at_dx 10 10 10 10	N 1 0.99869 2.99625 1.99754
… Male …	29	29	15
Male Male	38 39	29 29	44.8399 31.8753
 Female Female	10 11	10 10	1 1.99946
 Female	104	100	0.35995

This process is now repeated for 2015-2040 to obtain estimates for the current trajectory.

There is a specific and separate ESKD and mortality transition rate for each age, sex, and age at diagnosis combination, resulting from Poisson regression as outlined in Supplementary Text 2.

The size of the incident population is given by the product of the ABS population projection estimate for the year in question and 0.0025 (incidence of type 2 diabetes of 2.5 per 1000 Australian population; Supplementary Text 1). For example, in 2022, the size of the Australian population is projected to be 26,727,075, thus the incident population size with type 2 diabetes is 0.0025*26727075 = 66,817.69. The age and sex distribution of the incident population is assumed to remain constant from 2014-2040.


When applying diabetes incidence reductions, the size of the incident population is reduced proportionally to the size of the diabetes incidence reduction specified in Supplementary Text 1. For example, a 29% incidence reduction applied to 35% of the

whole population with incident type 2 diabetes in 2022 reduces the number of incident cases from 66,817.69 to 60,035.69 (=66,817.69*(1-0.35*0.29))). (This example is presented for simplicity, in the actual model the incidence reduction applies only to those older than 18 years of age).

When applying ESKD incidence reductions, the ESKD incidence rate is reduced by the amount detailed in Supplementary Text 5. For example, under the best-case scenario in 2030, the incidence of ESKD is reduced by 24.5% (=35%*70%). Thus, if the probability of transition to ESKD for those aged 10 years diagnosed with diabetes at age 10 years was 0.00007 in the current trajectory, it is reduced to 0.00005285 (=0.00007*(1-(0.35*0.7))).

In the Monte Carlo simulations, transition probabilities were simulated before being applied. Simulated parameters from the baseline scenario were held constant for each simulation of an intervention, i.e. each simulation compared the intervention with a paired baseline scenario in which the baseline parameters (incident diabetes rate, ESKD incidence rate, mortality rates in people without ESKD, and future population size) were the same for the baseline and intervention simulation.

The model is detailed schematically in the following figure:

A: In scenarios involving SGLT2i use, SGLT2is act to decrease the rate of transition from type 2 diabetes to ESKD.

B: In scenarios involving diabetes prevention, diabetes prevention acts to decrease the rate of transition from prediabetes to type 2 diabetes.

DKD: Diabetic kidney disease; ESKD – End-stage kidney disease.

Supplementary Text 5 – Assumptions for modelling ESKD incidence reductions with SGLT2i use

The effect of SGLT2is on the incidence of ESKD was estimated from a meta-analysis of phase III clinical trials (1); SGLT2is were found to reduce ESKD by 35% (RR: 0.65; 95% CI: 0.53-0.81). In Australia, SGLT2is are currently not recommended for individuals with an eGFR of <45 ml/min/1.73m², and because there's usually a delay of many years between reaching an eGFR of 45ml/min/1.73m² and progression to ESKD, the impact of SGLT2i use on ESKD incidence will not be immediate. Therefore, several assumptions about eGFR trajectories prior to initiation of renal replacement therapy (RRT) were made. Similarly, assumptions about how SGLT2i use will increase over time in the population with type 2 diabetes and DKD were made.

The best available evidence for estimation of eGFR trajectory prior to RRT was considered to be O'Hare et al (2). Among those with diabetes, ~90% had a steady progression to RRT from an eGFR of <60ml/min/1.73m² two years prior to RRT, and ~10% had a sudden progression from an eGFR of >60ml/min/1.73m². Of this ~90% with steady decline in renal function prior to RRT, we assumed ~80% will take ~6 years from reaching an eGFR of 45ml/min/1.73m² to reach an eGFR <30ml/min/1.73m² (estimated from (3)), and thus take approximately ~8 years from reaching an eGFR of 45ml/min/1.73m² until commencing RRT. The remaining ~20% will progress much faster, and will take ~4 years to reach RRT from reaching an eGFR of 45ml/min/1.73m². It is worth noting that these estimates assume linearity in eGFR decline, and while the majority of eGFR decline is linear, a nontrivial proportion is nonlinear (4).

Therefore, we assumed that 10% of individuals will decline from an eGFR of $>60ml/min/1.73m^2$ to RRT within 2 years, 72% will take 8 years from reaching an eGFR of $45ml/min/1.73m^2$ to RRT, and 18% of individuals will take ~4 years from reaching an eGFR of $45ml/min/1.73m^2$ to RRT. These times are used to calculate the delay between SGLT2i use and the impact of SGLT2is on the incidence of ESKD. For example, if SGLT2is were used in 20% of the population in 2020, we apply a reduction of 13% (20% of the incidence rate reduction of 0.65) to the incidence of ESKD: 10% of this effect will manifest in 2022, 72% in 2028, and 18% in 2024.

We based the likely SGLT2i use in people with type 2 diabetes and CKD on studies of the prevalence of Renin-Angiotensin-Aldosterone System inhibitor (RAASi) use. These studies show that the prevalence of RAASi use in this population varies with study design from ~20-60% (5,6). We assumed that following publication of the Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy (CREDENCE) trial, which showed clear benefit of these agents for progression of CKD among people with type 2 diabetes and macroalbuminuria (7), use of SGLT2is would reach 50% in this population. Furthermore, use of SGLT2is prior to 2020 in this population would not have been negligible, especially following the publication of several large trials showing benefits of SGLT2is on cardiovascular disease, the first of which was published in 2015 (8). Therefore, in the likely scenario, we assumed the use of SGLT2 is increased to 20% by 2020, and then increased to 50% by 2023, but remained contraindicated for individuals with an eGFR > 45ml/min/1.73m².

Because the CREDENCE trial showed evidence of benefit progression to ESKD in individuals with an eGFR as low as $30\text{ml/min}/1.73\text{m}^2$, it is reasonable to expect guidelines might change to expand use of SGLT2is to individuals with an eGFR as low as $30\text{ml/min}/1.73\text{m}^2$. Therefore, in the best-case scenario, we assumed use of SGLT2is increased to 28% in those with an eGFR >45ml/min/1.73m² by 2020, increasing to 70% by 2023. Use increased from 0% in 2019 to 70% by 2024 for those with an eGFR $30-45\text{ml/min}/1.73\text{m}^2$.

Year	Likely (%)	Best-case (%)
2018	0.00	0.00
2019	0.07	0.27
2020	0.34	0.58
2021	0.83	0.89
2022	1.52	5.58
2023	2.43	10.40
2024	3.54	15.23
2025	4.87	20.05
2026	6.41	24.50
2027	8.16	24.50
2028	10.11	24.50
2029	12.28	24.50
2030	14.66	24.50
2031-2040	17.50	24.50

Ultimately, when these assumptions are applied, the per cent reduction in incidence of ESKD each year applied is as follows:

References

1. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. The lancet Diabetes & endocrinology. 2019;7(11):845-54.

2. O'Hare AM, Batten A, Burrows NR, Pavkov ME, Taylor L, Gupta I, et al. Trajectories of Kidney Function Decline in the 2 Years Before Initiation of Long-term Dialysis. American Journal of Kidney Diseases. 2012;59(4):513-22.

3. Xie Y, Bowe B, Xian H, Balasubramanian S, Al-Aly Z. Estimated GFR Trajectories of People Entering CKD Stage 4 and Subsequent Kidney Disease Outcomes and Mortality. American Journal of Kidney Diseases. 2016;68(2):219-28.

4. Weldegiorgis M, de Zeeuw D, Li L, Parving H-H, Hou FF, Remuzzi G, et al. Longitudinal Estimated GFR Trajectories in Patients With and Without Type 2 Diabetes and Nephropathy. American Journal of Kidney Diseases. 2018;71(1):91-101.

5. Murphy DP, Drawz PE, Foley RN. Trends in Angiotensin-Converting Enzyme Inhibitor and Angiotensin II Receptor Blocker Use among Those with Impaired

Kidney Function in the United States. Journal of the American Society of Nephrology : JASN. 2019;30(7):1314-21.

6. Tuttle KR, Alicic RZ, Duru OK, Jones CR, Daratha KB, Nicholas SB, et al. Clinical Characteristics of and Risk Factors for Chronic Kidney Disease Among Adults and Children: An Analysis of the CURE-CKD Registry. JAMA Network Open. 2019;2(12):e1918169-e.

7. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine. 2019;380(24):2295-306.

8. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine. 2015;373(22):2117-28.

Supplementary Table 1 – Population Characteristics.

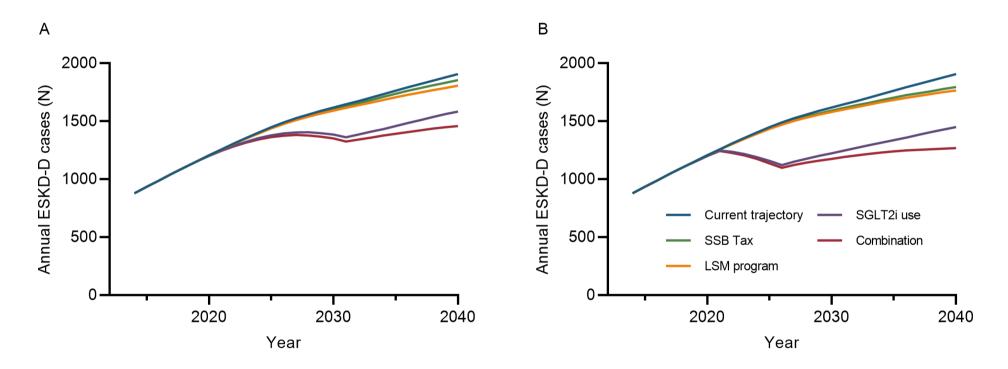
Characteristics of the population used for derivation of model data. The model used data derived from the National Diabetes Services Scheme linked to the Australia and New Zealand Dialysis and Transplant Registry and the Australian National Death Index. We included members with type 2 diabetes registered on the NDSS as of 1 January 2002 and all new registrants from this date until 31 December 2013.

		Males	Females	Overall
Total N (%)		636922 (54.2%)	537641 (45.8%)	1174563 (100.0%)
Incident ESKD ((N)	4902	2773	7675
Deaths without ESKD (N)		127614	98321	225935
Person-years of t	follow-up	4233208	3838415	8071623
	10-39	47583 (7.5%)	66327 (12.3%)	113910 (9.7%)
Age of onset of	40-54	200249 (31.4%)	140146 (26.1%)	340395 (29.0%)
diabetes – N (%)	55-69	268745 (42.2%)	207370 (38.6%)	476115 (40.5%)
	≥70	120345 (18.9%)	123798 (23.0%)	244143 (20.8%)
Duration of diabetes at end of follow-up – median (IQR)		7.9 (3.7-13.7)	8.9 (4.2-14.8)	8.3 (3.9-14.2)

Supplementary Table 2 – Remaining lifetime risk of ESKD, to age 85 years, by age of onset of diabetes and sex. Estimated using multistate life table modelling. Data are presented as median (95% uncertainty interval).

Age of onset of diabetes	Males	Females
20	29.5% (23.1-37.9)	17.7% (11.6-25.3)
30	17.7% (14.9-21.4)	12.5% (9.5-16.1)
40	9.0% (8.0-10.2)	8.4% (7.1-10.0)
50	4.7% (4.2-5.2)	4.4% (3.9-5.2)
60	2.5% (2.3-2.8)	1.8% (1.6-2.1)
70	1.2% (1.1-1.4)	0.7% (0.6-0.8)
80	0.3% (0.3-0.4)	0.1% (0.1-0.2)

Supplementary Table 3 – Number of incident diabetes cases expected and reduced by interventions between 2020 and 2040 under various modelled scenarios.


Data are presented as number of expected cases for current trajectory, and number of cases reduced (%) for each scenario.

	Number of cases expected			Number of cas	es reduced (%)			
Age		Lifestyle modification program		Sugar sweetened beverage tax		Combination of all interventions		
	Current Trajectory	Likely	Best-case	Likely	Best-case	Likely	Best-case	
Males			·	Ma	ales			
10-39	61000	5883 (9.6%)	8412 (13.8%)	4106 (6.7%)	8736 (14.3%)	9516 (15.6%)	15840 (26.0%)	
40-54	248230	24565 (9.9%)	35127 (14.2%)	16635 (6.7%)	35399 (14.3%)	39257 (15.8%)	65097 (26.2%)	
55-69	352664	34900 (9.9%)	49905 (14.2%)	19415 (5.5%)	41320 (11.7%)	52001 (14.7%)	84643 (24.0%)	
70-84	160607	15894 (9.9%)	22727 (14.2%)	4212 (2.6%)	8992 (5.6%)	19727 (12.3%)	30438 (19.0%)	
Total; 95% uncertainty interval	822501; 641981 to 1035481	81241 (9.9%); 31270 to 131046	116171 (14.1%); 44687 to 187478	44376 (5.4%); 10514 to 76630	94441 (11.5%); 20760 to 162054	120373 (14.6%); 63421 to 183419	195473 (23.8%); 103337 to 298096	
	Females		Females					
10-39	60009	5759 (9.6%)	8234 (13.7%)	2808 (4.7%)	5975 (10.0%)	8241 (13.7%)	13297 (22.2%)	
40-54	167909	16640 (9.9%)	23793 (14.2%)	7821 (4.7%)	16639 (9.9%)	23552 (14.0%)	37753 (22.5%)	
55-69	257425	25511 (9.9%)	36478 (14.2%)	10230 (4.0%)	21819 (8.5%)	34691 (13.5%)	54815 (21.3%)	
70-84	149015	14767 (9.9%)	21116 (14.2%)	3638 (2.4%)	7862 (5.3%)	18115 (12.2%)	27843 (18.7%)	
Total; 95% uncertainty interval	634358; 494942 to 798935	62676 (9.9%); 24125 to 101188	89621 (14.1%); 34475 to 144747	24506 (3.9%); 5916 to 42413	52293 (8.2%); 12503 to 89897	84701 (13.4%); 42760 to 128962	133637 (21.1%); 71372 to 201863	
Overall		Overall						
Total; 95% uncertainty interval	1456859; 1136923 to 1834415	143927 (9.9%); 55395 to 232234	205803 (14.1%); 79161 to 332225	68882 (4.7%); 16430 to 119043	146686 (10.1%); 33393 to 251947	204824 (14.1%); 106004 to 312035	328911 (22.6%); 175026 to 498479	

Supplementary Figure 1 – Number of annual incident diabetes-related end-stage kidney disease (ESKD-D) cases among people with type 2 diabetes in Australia, by current trajectory and different interventions.

A – Likely scenarios. B – Best-case scenarios.

Abbreviations: LSM – Lifestyle modification; SSB – Sugar Sweetened Beverage; SGLT2i – Sodium-glucose co-transporter 2 inhibitor.

