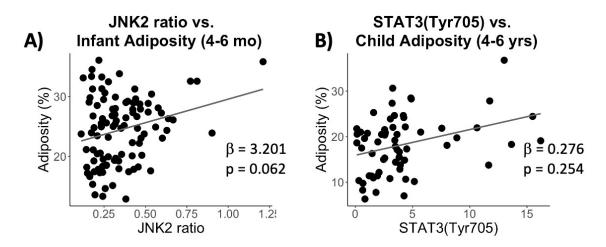

Supplementary Figures and Tables—Keleher et al. 2020



Supplementary Figure S1. Summary of representative images of proteins from WES runs.

Supplementary Figure S2. Full images of proteins from WES runs.

Supplementary Figure S3. Scatter plots showing relationships between proteins in the inflammation pathway and child outcomes. The MANOVA indicated a significant effect of these proteins on child body composition, however the MMR did not reach significance for adiposity or body weight (MMR p-values shown on graphs). A) Correlations showed a positive correlation between $JNK2^{Thr183/Tyr185}/JNK2$ and adiposity (r = 0.253, p = 0.0115) and B) a positive correlation between STAT3^{Tyr705} and adiposity (r = 0.324, p = 0.010).

Supplementary Table S1: Antibodies used.

Pathway	Target	Molecular Weight (kDa)	Supplier	Catalog #	RRID	Dilution
	Pro-Caspase 1	50	CST	2225	AB_2243894	1:100
	STAT3 ^{Tyr705}	85	CST	9131	AB_331586	1:10
	Stat3 (124H6)	85	CST	9139	AB_331757	1:50
	JNK1 ^{Thr183/Tyr185} (81E11)	46	CST	4668	AB_823588	1:100
Inflammation	JNK2 ^{Thr183/Tyr185} (81E11)	54	CST	4668	AB_823588	1:100
	JNK1 (SAPK/JNK)	46	CST	9252	AB_2250373	1:100
	JNK2 (SAPK/JNK)	54	CST	9252	AB_2250373	1:100
	IL-1β	32	Abcam	ab9787	AB_308787	1:25
	рЗ8МАРК	43	CST	9212	AB_330713	1:100
	IGF1r	100	Novus Bio	NBP1-77680	AB_11016057	1:100
	GSK3β ^{Ser9} (D85E12)	56	CST	5558	AB_10013750	1:50
Growth Factor/Insulin Signaling	GSK3β	56	Novus Bio	NBP1-47470	AB_10010422	1:100
	ERK(1/2) ^{Thr202/Tyr204} (D13.14.4E) XP	45/49	CST	4370	AB_2315112	1:200
	p44/42 MAPK (Erk1/2) (137F5)	45/49	CST	4695	AB_390779	1:200
Cortisol Metabolism	11b-HSD2	44	R&D	MAB8630	NA	1:100
Protein Glycosylation	OGT (D1D8Q)	110	CST	23177	AB_2798857	1:100
Mitochondrial Biogenesis	PGC1-α	131	CST	2178	AB_823600	1:25
	Vinculin	116	CST	13901	AB_2728768	1:5000
Loading Controls	beta-actin	45	CST	4970	AB_2223172	1:5000

Supplementary Table S2. Transformations

Pathway	Protein	Lambda value from Box Cox Transformation
	Pro-Caspase 1	-0.34
	STAT3 ^{Tyr705}	0.26
	STAT3 ^{Tyr705} /STAT3	0.26
	JNK1 ^{Thr183/Tyr185}	-0.06
Inflammation	JNK1 ^{Thr183/Tyr185} /JNK1	-0.18
	JNK2 ^{Thr183/Tyr185}	-0.20
	JNK2 ^{Thr183/Tyr185} /JNK2	-0.10
	IL-1β	0.26
	р38МАРК	0.26
	IGF1r	0.14
	GSK3β ^{Ser9}	inverse normal transformation
Growth Factor/Insulin Signaling	GSK3β ^{Ser9} /GSK3	0.06
5181101118	ERK(1/2) ^{Thr202/Tyr204}	0.02
	ERK(1/2) ^{Thr202/Tyr204} /ERK(1/2)	0.06
Cortisol Metabolism	11b-HSD2	0.14
Protein Glycosylation	OGT	0.50
Mitochondrial Biogenesis and Function	PGC1-α	0.14

Supplementary Table S3. Summary of the statistical models tested.

Model Number	Model
1	Proteins ~ Maternal BMI + Sex + Gestational Age
2	Adiposity (birth) + Body mass (birth) ~ Proteins + Sex + Gestational Age
3	Adiposity (infant) + Body mass (infant) ~ Proteins + Sex + Infant Age
4	Δ Adiposity (infant-birth) + Δ Body mass (infant-birth) ~ Proteins + Sex + Infant Age
5	Adiposity (child) + Body mass (child) ~ Proteins + Sex + Child Age
6	Midthigh + Triceps + Subscapular Skinfolds ~ Proteins + Sex + Child Age
7	Child triglycerides ~ Proteins + Sex + Child Age
8	Child insulin ~ Proteins + Sex + Child Age

Supplementary Table S4. Results of test for the effect of maternal BMI, on the protein pathways (maternal BMI was not significant)

Dethway	Maternal BMI	Sex	Gestational	Protein	Maternal BMI	Sex	Gestational
Pathway	p-value	p-value	Age p-value	Protein	p-value	p-value	Age p-value
				Pro-Caspase 1	0.652	0.054	0.273
				STAT3 ^{Tyr705}	0.326	0.160	0.315
				STAT3 ^{Tyr705} /STAT3	0.293	0.275	0.592
				JNK1 ^{Thr183/Tyr185}	0.133	0.683	0.808
Inflammation	0.733	0.509	0.837	JNK1 ^{Thr183/Tyr185} /JNK1	0.404	0.505	0.865
				JNK2 ^{Thr183/Tyr185}	0.195	0.195	0.779
				JNK2 ^{Thr183/Tyr185} /JNK2	0.322	0.150	0.948
				IL-1β	0.847	0.411	0.774
				р38МАРК	0.437	0.333	0.323
				IGF1r	0.836	0.945	0.530
Growth				GSK3β ^{Ser9}	0.619	0.377	0.790
Factor/Insulin	0.995	0.480	0.948	GSK3β ^{Ser9} /GSK3	0.934	0.160	0.992
Signaling				ERK(1/2) ^{Thr202/Tyr204}	0.573	0.159	0.497
				ERK(1/2) ^{Thr202/Tyr204} /ERK(1/2)	0.639	0.242	0.465
Cortisol Metabolism	0.803	0.984	0.282	11b-HSD2	0.820	0.936	0.282
Protein Glycosylation	0.290	0.426	0.543	OGT	0.275	0.462	0.543
Mitochondrial							
Biogenesis and	0.425	0.561	0.102	PGC1-α	0.467	0.466	0.102
Function							

Supplementary Table S5. Results of MANOVA and MMR tests for the effect of cortisol metabolism on offspring traits (results discussed if the MANOVA was significant)

			Bi	rth					Infancy (4-6 months)							Child	nood (4-6 y	years)					
Pathway	Variable	MANO	VA	M	MR	MANO	/A	M	MR	MANO	VA 🛛	MMR		MANO	VA	MMR	MANC	AVG		MMR		multiple regr	ression	multiple reg	ression
. utilities	Variable	p-value	F stat	p-v	alue	p-value	F stat	p-va	alue	p-value	F stat	p-value		p-value	F stat	p-value	p-value	F stat		p-value		p-value	t value	p-value	t value
		Body Comp	osition	Adiposity E	Body Weight	Body Comp	osition	Adiposity	Body Weight	∆Body Comp	position	ΔAdiposity ΔBo	dy Weight	Body Comp	osition	Adiposity Body Weight	Skinfo	lds	Midthigh S	ubscapular	Triceps	Insulin	1	Triglyceri	ides
	11b-HSD2	0.983	0.017			0.592	0.526			0.441	0.825			0.723	0.326	5	0.159	1.791				0.948	-0.065	0.302	1.047
cortisol	Sex	0.008	5.048	0.314	0.017	1.43E-07	18.724	5.910E-06	0.408	0.000	8.477	0.000	0.201	0.199	1.662	2	0.505	0.789				0.879	-0.153	0.017	-2.497
metabolism	Age	5.533E-06	13.731	0.005	8.800E-07	5.40E-08	20.102	0.362	2.060E-05	5.498E-07	16.927	0.246	0.002	0.229	1.515	5	0.025	3.347	0.004	0.695	0.228	0.520	-0.649	0.826	-0.221
	Degrees of Freedom	98			Lastration 10	94				93				58			62					39		39	

Supplementary Table S6. Results of MANOVA and MMR tests for the effect of protein glycosylation on offspring traits.

			Birth					Infancy	4-6 months))							Child	nood (4-6 years)				
Pathway	Variable	MANOVA		MMR	MANOV	/A	M	MR	MANOV	/A	MMR		MANO	VA	MMR	MANO	VA	MMR	multiple reg	ression	multiple reg	ression
ruciiiuy	V uriubic	p-value F stat	F	-value	p-value	F stat	p-va	alue	p-value	F stat	p-value		p-value	F stat	p-value	p-value	F stat	p-value	p-value	t value	p-value	t value
	Body Composition Adiposity Body W		Body Weight	Body Comp	osition	Adiposity	Body Weight	∆Body Comp	osition	ΔAdiposity ΔBod	y Weight	Body Comp	osition	Adiposity Body Weight	Skinfo	lds	Midthigh Subscapular Triceps	Insuli	n	Triglycer	ides	
	OGT	0.515 0.6	57		0.372	0.998			0.441	0.826			0.981	0.019)	0.898	0.196		0.440	0.780	0.307	1.034
protein	Sex	0.009 4.9	0.286	0.020	1.76E-07	18.436	8.380E-06	0.353	0.000	8.276	0.000	0.211	0.184	1.743	3	0.511	0.778		0.982	-0.023	0.029	-2.268
glycosylation	Age	4.002E-06 14.1	17 0.005	6.440E-07	3.64E-08	20.667	0.110	2.660E-05	3.531E-07	17.536	0.181	0.002	0.229	1.513	3	0.060	2.602		0.455	-0.753	0.766	-0.300
	Degrees of Freedom	98			94				93							60			39		39	

Supplementary Table S7. Results of MANOVA and MMR tests for the effect of the growth/insulin signaling pathway proteins on offspring traits.

			Bir	th					Infancy (4-6 months)							Childh	ood (4-6	years)					
Pathway	Variable	MANO	VA	M	MR	MANOV	/A	MM	IR	MANO	VA	MMR	1	MANOV	A	MMR	MANO	AVA		MMR		multiple reg	ression	multiple reg	ression
,		p-value	F stat	p-v	alue	p-value	F stat	p-val	ue	p-value	F stat	p-valu	e	p-value	F stat	p-value	p-value	F stat		p-value		p-value	t value	p-value	t value
		Body Comp	osition	Adiposity E	Body Weight	Body Comp	osition	Adiposity E	Body Weight	∆Body Com	position	ΔAdiposity ΔB	ody Weight	Body Compo	sition	Adiposity Body Weight	Skinfo	lds	Midthigh	Subscapular	Triceps	Insulir	1	Triglycer	ides
	IGF1r	0.045	3.217	0.016	0.211	0.940	0.062			0.231	1.491			0.936	0.066		0.270	1.343				0.647	-0.462	0.026	2.330
	GSK3β ^{Ser9}	0.812	0.208			0.779	0.250			0.625	0.472			0.620	0.482		0.005	4.773	0.052	0.936	0.594	0.702	0.386	0.544	-0.612
and a state	GSK3β ^{Ser9} /GSK3	0.378	0.983			0.145	1.972			0.710	0.344			0.548	0.608		0.745	0.413				0.725	-0.355	0.602	0.527
growth factor/insulin	ERK(1/2) ^{Thr202/Tyr204}	0.507	0.685			0.491	0.716			0.095	2.416			0.233	1.498		0.171	1.730				0.101	-1.680	0.871	0.163
signaling	ERK(1/2) ^{Thr202/Tyr204} /ERK(1/2)	0.864	0.146			0.480	0.739			0.842	0.173			0.655	0.426		0.004	4.953	0.011	0.812	0.106	0.142	1.497	0.882	0.147
	Sex	0.012	4.654	0.369	0.023	2.35E-07	18.172	1.210E-05	0.327	0.001	8.197	0.000	0.247	0.138	2.057		0.748	0.408				0.990	-0.013	0.016	-2.537
	Age	1.11E-05	12.914	0.004	1.960E-06	5.55E-08	20.232	0.176	1.930E-05	8.665E-07	16.427	0.234	0.003	0.287	1.277		0.082	2.351				0.301	-1.048	0.557	-0.593
	Degrees of Freedom	94				90				89				54			58					39		35	

Supplementary Table S8. Results of MANOVA and MMR tests for the effect of the inflammation pathway proteins on offspring traits.

			Bir	th					Infancy (4	4-6 months)									Child	hood (4-6	years)					
Pathway	Variable	MANOV	A	M	MR	MANOV	A	MN	1R	MANOV	A	MMR		MANOV	'A	MM	R	MANC	NA		MMR		multiple regr	ession	multiple reg	ression
,		p-value	F stat	p-va	alue	p-value	F stat	p-val	ue	p-value	F stat	p-value		p-value	F stat	p-val	ue	p-value	F stat		p-value		p-value	t value		t value
		Body Compos	sition /	Adiposity B	Body Weight	Body Compo	sition	Adiposity E	Body Weight	∆Body Comp	osition	ΔAdiposity ΔBo	dy Weight	Body Compo	sition	Adiposity Bo	dy Weight	Skinfo	lds	Midthigh S	ubscapular	Triceps	Insulin		Triglycer	ides
	Pro-Caspase 1	0.318	1.159			0.323	1.145			0.290	1.258			0.276	1.323			0.374	1.060				0.239	-1.197	0.434	0.793
	STAT3 ^{Tyr705}	0.740	0.302			0.076	2.659			0.383	0.970			0.047	3.253	0.254	0.341	0.732	0.431				0.802	-0.253	0.288	1.081
	STAT3 ^{Tyr705} /STAT3	0.245	1.426			0.199	1.647			0.024	3.911	0.194	0.216	0.992	0.008			0.617	0.601				0.805	0.249	0.165	-1.421
	JNK1 ^{Thr183/Tyr185}	0.225	1.516			0.441	0.827			0.632	0.461			0.838	0.177			0.479	0.838				0.761	-0.306	0.709	0.376
	JNK1 ^{Thr183/Tyr185} /JNK1	0.918	0.086			0.962	0.039			0.665	0.410			0.081	2.649			0.597	0.634				0.540	0.619	0.237	-1.206
Inflammation	JNK2 ^{Thr183/Tyr185}	0.789	0.238			0.155	1.903			0.432	0.847			0.666	0.410			0.064	2.571				0.325	0.998	0.433	-0.794
	JNK2 ^{Thr183/Tyr185} /JNK2	0.399	0.929			0.006	5.528	0.141	0.755	0.069	2.757			0.129	2.132			0.037	3.044	0.005	0.446	0.088	0.352	-0.943	0.068	1.894
	IL-1β	0.109	2.269			0.310	1.187			0.108	2.285			0.368	1.021			0.216	1.538				0.968	0.041	0.986	-0.018
	p38MAPK	0.885	0.122			0.012	4.614	0.291	0.221	0.008	5.148	0.007	0.141	0.095	2.472			0.484	0.830	1			0.881	-0.150	0.046	-2.084
	Sex	0.006	5.397	0.229	0.016	3.38E-06	14.637	9.580E-05	0.324	0.004	5.802	0.002	0.333	0.117	2.245			0.195	1.626				0.685	0.410	0.034	-2.219
	Age	6.43E-05	13.693	0.004	1.120E-06	2.55E-07	18.208	0.094	2.620E-04	2.055E-06	15.367	0.376	0.002	0.353	1.064			0.039	2.997	0.004	0.276	0.119	0.330	-0.988	0.823	0.226
	Degrees of Freedom	90				86				87				50				54					35		31	

Supplementary Table S9. Results of MANOVA and MMR tests for the effect of mitochondria biogenesis on offspring traits.

			Bi	rth					Infancy (4-6 months)							Child	nood (4-6 years)				
Pathway	Variable	MANO	/A	M	MR	MANOV	A	MM	1R	MANO	/A	MM	R	MANO	VA	MMR	MANO	VA	MMR	multiple reg	ession	multiple reg	gression
. utility	(dridble	p-value	F stat	p-v	alue	p-value	F stat	p-va	lue	p-value	F stat	p-val	ue	p-value	F stat	p-value	p-value	F stat	p-value	p-value	t value	p-value	t value
		Body Comp	osition	Adiposity E	Body Weight	Body Compo	osition	Adiposity I	Body Weight	∆Body Comp	osition	ΔAdiposity Δ	Body Weight	Body Comp	osition	Adiposity Body Weight	Skinfo	lds	Midthigh Subscapular Triceps	Insulin		Triglycer	rides
mitochondrial	PGC1-α	0.462	0.778			0.239	1.455			0.457	0.790			0.331	1.128	}	0.336	1.150		0.019	2.443	0.193	1.325
biogenesis and	Sex	0.011	4.730	0.403	0.013	2.79E-07	17.799	7.710E-06	0.373	0.001	7.791	0.000	0.231	0.137	2.061		0.527	0.749		0.965	0.044	0.027	-2.291
•	Age	4.090E-06	14.119	0.003	7.110E-07	7.57E-08	19.621	0.152	2.810E-05	4.984E-07	17.062	0.248	0.001	0.229	1.512		0.067	2.508		0.532	-0.630	0.646	-0.464
function	Degrees of Freedom	98				94			1000 60 1000								60			43		39	