Supplemental Material

SCIENTIFIC MEMBERS OF THE CONSORTIUM

See Table S1.

DATA

Examinations

Examinations were performed in the morning after a 10-hour overnight fast. Participants remained on their usual nonantidiabetic medications; metformin, if used, was stopped for the 24 hours preceding the study visit and restarted immediately after. Anthropometric data, blood pressure, and urine samples were collected. An intravenous cannula was inserted into a forearm vein according to local protocols. Baseline blood samples were immediately collected for analysis of glutamic acid decarboxylase and islet antigen-2 antibodies, glucagon-like peptide-1, glucagon, insulin, Cpeptide, HbA_{1c}, and DNA.

Mixed-meal tolerance test (MMTT)

Before the MMTT, fasting samples for glucose, insulin and C-peptide analysis were collected. The MMTT consisted of a 250 ml Fortisip liquid drink (18.4 g carbohydrate per 100 ml) over a period of 2–5 min. Blood samples were collected every 30 min for two hours for subsequent glucose, insulin and C-peptide assays.

Biochemistry assays

Measurements were performed by a central laboratory. Plasma glucose was measured by the enzymatic colorimetric assay GOD-PAP, using Roche MODULAR P analyzers (Hoffmann-La Roche, Basel, Switzerland). Plasma insulin and C-peptide were measured by electrochemiluminescence, using Roche E170 analyzers (Hoffmann-La Roche). HbA_{1c} was measured by ion-exchange high-performance liquid chromatography, using Tosoh G8 analyzers (Tosoh Bioscience, San Francisco, CA, USA).

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured by UV absorbance without pyridoxal phosphate activation. Gamma-glutamyl transferase (GGT) was measured by enzymatic colorimetric assay. Serum creatinine and albumin were measured with the Creatinine Jaffé method and the bromocresol green method, respectively. Cholesterol was measured by enzymatic colorimetric methods, HDL-cholesterol was measured directly using PEG-modified enzymes and dextran sulphate, triacylglycerol was measured by quantitative determination with glycerol blanking. AST, ALT, GGT, serum creatinine and albumin, cholesterol, HDL-cholesterol and triacylglycerol was calculated from the Friedewald formula.

Intact proinsulin was measured using the TECO Medical Intact Proinsulin ELISA kit in use on the Dynex DS2 analyzer. Glucagon, glutamic acid decarboxylase (GAD) and islet antigen-2 antibodies (IA-2) were measured using a DS2 Elisa robot, Dynex technologies.

Plasma samples for glucagon-like peptide-1 (GLP-1) measurement were collected in P800 tubes (Becton Dickinson, Wokingham, UK) to prevent intrinsic proteolysis. Intact GLP-1 was measured using MSD GLP-1 active kit (product code K150JWC; Meso Scale Diagnostics, Rockville, MD, USA). Total GLP-1 was assayed using MSD GLP-1 total kit (product code K150JVC; Meso Scale Diagnostics).

Each biochemical assay was performed using validated standard methods. Reference samples were included in all procedures to control for inter-assay variation, and the laboratory regularly participated in international external quality assessment schemes.

Body composition

Body mass index (BMI) was calculated as weight divided by height squared, and waist circumference was measured at the level of the umbilicus at mid-respiration. The hepatic steatosis index (HSI) was calculated as described previously (1).

Abdominal MRI

The volume of adipose tissue was measured using MRI, as described elsewhere (2). Total abdominal adipose tissue was separated into intra-abdominal adipose tissue, also referred to as "visceral" fat, and abdominal subcutaneous adipose tissue. Liver and pancreas fat and iron were derived simultaneously using a multiecho MRI technique (2–4).

Dietary data

Self-reported dietary intake was assessed by 24-hour multi-pass method, using food habit and 24-hour recall questionnaires. Nutritional analysis was undertaken using Dietplan-7 software (Forestfield Software Ltd, Horsham,

UK). All diet coders were trained by a lead research dietician/nutritionist using a study specific operational manual protocol. Detailed description of the coding and diet analysis protocol are reported elsewhere (5). Dietary patterns were assessed in concordance with the WHO dietary guidelines using the validated "Healthy Diet Indicator" (HDI) (6); a higher HDI score indicates a more favorable diet. The score was calculated from the dietary intakes of all food and drink consumed except alcohol, which was analyzed separately.

Physical activity intensity and sedentary behaviour

Participants were fitted with a wrist-worn triaxial accelerometer (ActiGraph GT3X+; Actigraph LLC, Pensacola, FL, USA) for measurement of physical activity, sedentary behavior and sleep over 10 days. The monitor was fitted to the participant's non-dominant wrist using an adjustable strap. The participant was requested to wear the monitor continuously for 10 days to allow habitual uninterrupted measures of both sleep and physical activity. The monitor was set to record at 30 Hz with the manufacturer's sleep mode disabled. High-pass-filtered vector magnitude (hpfVM) was derived as described elsewhere (7). In this analysis, we used the 10-day mean hpfVM and the percentage of hpfVM values ≤ 48 mg as measures of physical activity intensity and sedentary behavior.

Type 2 diabetes (T2D) polygenic risk score

A T2D polygenic risk score was computed from the 403 single-nucleotide polymorphisms (SNPs) and the respective effect sizes reported for T2D in Mahajan et al. (8). The individual score values were obtained by summing up the number of risk alleles at each locus multiplied by its effect size.

Additional questionnaires

Questionnaire data were collected on alcohol consumption, smoke habits, family history of diabetes and medication history.

The whole set of traits considered in this study is reported in Table S2.

METHODS

Area under the curves and mean values

Areas under the curve (AUC) of several MMTT variables were computed according to the trapezoidal rule and mean values as AUC/time interval.

Mathematical modelling of β-cell function

From MMTT glucose and C-peptide, the following β -cell function parameters were calculated by mathematical modelling (9): glucose sensitivity (GS), i.e., the slope of the relationship between glucose concentration and insulin secretion rate; rate sensitivity (RS), marker of early insulin release; insulin secretion rate at 8 mmol/l glucose (ISRstd); potentiation factor ratio (PR), the ratio between the potentiation factor at 2- and 0-hours, ; total insulin secretion (ISRtot), i.e., the AUC of insulin secretion during the whole MMTT. Insulin secretion rate was calculated from C-peptide using Van Cauter's C-peptide model (10).

Insulin clearance

Fasting insulin clearance (CLIb) was calculated as the ratio between fasting insulin secretion and fasting insulin concentration. The MMTT insulin clearance (CLIm) was calculated as the ratio of the AUCs of insulin secretion and insulin concentration during the MMTT.

Mathematical modelling of HbA_{1c} progression rate

The HbA1c trajectories were described with a conditional linear mixed-effect model (11). The conditional approach employs a linear transformation of the data to derive a longitudinal and a cross-sectional component, which are orthogonal. The transformation makes modelling of the longitudinal component independent of the cross-sectional effects: the former is relevant for quantification of HbA_{1c} progression rate, while the latter are potential confounders that need not to be considered in the conditional approach. In particular, the approach eliminates possible spurious correlations between the longitudinal parameters and baseline HbA_{1c}, which may arise if baseline HbA_{1c} is not accurately modelled.

The longitudinal HbA_{1c} component was described as the sum of the following terms:

- a proportional effect of time, described by the parameter r_i , where *i* represents a specific individual, represented as a random variable with a normal distribution;
- a proportional effect of BMI;
- a linear effect of the metformin dose, expressed as percentage of a maximal dose of 3 grams;

- a linear effect of the cumulative dose for the other antidiabetic drugs (insulin excluded), expressed as sum of the percentages of the maximum dose of each drug;
- a constant effect of insulin treatment;
- a proportional effect of delay in HbA_{1c} assay, i.e. of the difference between the time of measurement and the time of sample collection;
- a residual error ε_{ik} , where k refers to the time point, represented as a random variable from a normal distribution with zero mean.

The insulin and BMI effects were constrained to be negative and positive, respectively. The linear effects of the treatment *dose* were modelled as 0 for *dose*=0, and as a+b·*dose* for *dose*>0, where a and b were different for metformin and the other antidiabetic drugs and were constrained to be negative. Maximum doses for antidiabetic drugs different from metformin and insulin were fixed to the values in Table S3. A medication was considered effective at a given time if it was taken at least 30 days before.

The r_i parameter represents the HbA_{1c} underlying progression rate, adjusted for changes in BMI and antidiabetic treatments.

The model parameters were estimated using Monolix 2016 R1(12), which implements the SAEM algorithm for estimation of mixed-effect models. In a first step, the software identifies mean and standard deviation of the population distribution of the model parameters with inter-individual variability (in our case just r). In the second step, the software computes the individual estimates of the parameters (in our case r_i) by simultaneously fitting the data and using the previously estimated distributions as priors (*maximum a posteriori* estimation).

The parameter estimates of the HbA_{1c} progression model are reported in Table S4. The BMI and treatment effects were concordant with what shown in the literature(13), considering the low baseline HbA_{1c} values in this study (6.41 ± 0.53 %, 46.5 ± 5.8 mmol/mol, mean \pm standard deviation).

Progression rates for other traits

The progression rates for all other traits were derived in the same way as for HbA_{1c}, but without including the effect of treatments and assay delay. The BMI effect was included only in the models for OGIS and QUICKI. The BMI effects on OGIS and QUICKI progression rates were -8.68 \pm 11% (estimate \pm relative standard error) ml min⁻¹ kg⁻¹ and - 0.00157 \pm 9% m² kg⁻¹, respectively.

On the multivariable analyses

Baseline values of the β -cell function parameters of some subjects were discarded due to high uncertainty in their estimates.

RESULTS

Progression rates of HbA_{1c} and other traits

HbA_{1c} was measured at two visits in 6% of participants, at three visits in 15% of participants, at four visits in 75% of participants, and at five visits in 4% of participants.

In 50% of the subjects, T2D was managed via lifestyle only along the whole study.

The estimates of the progression rates for HbA_{1c} , adjusted for changes in BMI and in diabetes medications, and for the other traits are reported in Figure S1 (histogram for HbA_{1c} progression rates only) and Table S5.

Variables associated with HbA_{1c} progression rate

The pairwise associations between HbA_{1c} progression rate and baseline values and progression rates of the investigated traits are shown in Figure S2.

The standardized coefficients and the *p* values of the independent variables included in the multivariable linear analysis of HbA_{1c} progression rate are shown in Table S6. The table presents different regression models, all adjusted for sex, baseline age and center, and considering different subsets of subjects, based on the availability of different subsets of variables. The models described include those with a unique independent variable (models named "-1"), a model with the adjustment variables only (model "0"), and models including or excluding the effects of baseline liver fat or visceral fat, and the effects of baseline BMI and fasting HDL-cholesterol, found to have non-significant effects once visceral or liver fat is included in the analysis. The models presented in the main text are numbered "1" and "9". In the multivariable linear analysis, the indices of insulin sensitivity OGIS and QUICKI, as well as HOMA-IR (14), Stumvoll (15) and Matsuda (16) indices (data not shown), were interchangeable in terms of overall analysis results, with OGIS producing the best performance (adjusted $R^2 0.38 vs 0.33, 0.37, 0.28$ and 0.29, respectively; N = 625).

Variables associated with fast vs average HbA_{1c} progression

The logistic analysis reported in the main text defines fast vs average progressors based on a threshold on HbA_{1c} progression rate that clearly separate the two groups (0.255 %/year, 2.79 mmol mol⁻¹ year⁻¹, Figure S1). We found that

this threshold corresponds to $(q_{50} - q_1) + q_{50}$, where q_1 and q_{50} are the 1st and 50th quantiles of the distribution of individual HbA_{1c} progression rates. The use of lower thresholds allows the identification of larger sets of fast progressors. In particular, using the 2nd, 5th or 10th quantile instead of the 1st quantile in the formula, thresholds of 0.200, 0.143 or 0.121 %/year (2.19, 1.56 or 1.32 mmol mol⁻¹ year⁻¹), respectively, are obtained, with a corresponding number of fast progressors of *N*=61, *N*=110 or *N*=131 subjects, respectively, instead of *N*=33 (Figure S1). With the lower thresholds, discrimination capacity, sensitivity, specificity and accuracy of the logistic model described in the main text remain very similar (Figure S3). The effects of the independent variables of the logistic model are also essentially unaffected (Figure S3). In all cases, it appears that stronger deterioration and a lower baseline value of OGIS and GS, and CLIm increase are independently associated with fast progression. Minor differences are the following: the effect of HDL reduction is significant with all thresholds apart from 0.200 %/year; the effect of baseline HDL is significant only using thresholds 0.143 and 0.121 %/year; the effect of baseline CLIm is significant only with the lowest threshold (0.121 %/year); the effect of baseline HbA_{1c} is significant with all lower thresholds but not with the original one.

The percentage of patients without diabetes medications along the whole study was higher in average than in fast progressors (51% *vs* 30%, *p*=0.021 from two-sided Chi-square test with α =0.05). At baseline, the percentages of fast progressors and of average progressors treated with metformin were not different: 39.4% [24.7-56.3%, 95% CI] *vs* 33.9% [30.5-37.5%], respectively (*p* = 0.64). At the last visit, the percentage of fast progressors treated with any diabetes medication, 66.7% [49.6-80.2%], was somewhat higher than the percentage of average progressors treated with any diabetes medication, 47.5% [43.8-51.2%] (*p* = 0.048). This difference was driven by a larger use of diabetes medications other than metformin or insulin in fast progressors (30.3% [17.4-47.3%] *vs* 5.0% [3.6-6.9%], *p* = 3E-8). Again at the last visit, the number of patients treated with insulin (seven average progressors) was too low to derive any trustworthy comparison between percentages of fast and average progressors treated with insulin (0.0% [0.0-10.4%] and 1.0% [0.5-2.1%], respectively, *p* = 0.74).

REFERENCES

- 1. Lee J-H, Kim D, Kim HJ, Lee C-H, Yang JI, Kim W, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2010 Jul;42(7):503–8.
- 2. Thomas EL, Fitzpatrick JA, Malik SJ, Taylor-Robinson SD, Bell JD. Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc. 2013 Aug;73:56–80.
- 3. O'Regan DP, Callaghan MF, Wylezinska-Arridge M, Fitzpatrick J, Naoumova RP, Hajnal JV, et al. Liver fat content and T2*: simultaneous measurement by using breath-hold multiecho MR imaging at 3.0 T--feasibility. Radiology. 2008 May;247(2):550–7.
- 4. St Pierre TG, Clark PR, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci. 2005;1054:379–85.
- 5. Gibson R, Eriksen R, Lamb K, McMeel Y, Vergnaud A-C, Spear J, et al. Dietary assessment of British police force employees: a description of diet record coding procedures and cross-sectional evaluation of dietary energy intake reporting (The Airwave Health Monitoring Study). BMJ Open. 2017 Apr 1;7(4):e012927.
- 6. Jankovic N, Geelen A, Streppel MT, de Groot LCPGM, Orfanos P, van den Hooven EH, et al. Adherence to a Healthy Diet According to the World Health Organization Guidelines and All-Cause Mortality in Elderly Adults From Europe and the United States. Am J Epidemiol. 2014 Nov 15;180(10):978–88.
- 7. Brage S, Westgate K, Wijndaele K, Godinho J, Griffin S, Wareham N. Evaluation of a method for minimising diurnal information bias in objective sensor data. In: Int Conf Amb Mon Phys Act Mov. 2013.
- Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018 Nov;50(11):1505–13.
- 9. Mari A, Tura A, Gastaldelli A, Ferrannini E. Assessing Insulin Secretion by Modeling in Multiple-Meal Tests: Role of Potentiation. Diabetes. 2002 Feb 1;51(Supplement 1):S221–6.

- Van Cauter E, Mestrez F, Sturis J, Polonsky KS. Estimation of Insulin Secretion Rates from C-Peptide Levels. Comparison of Individual and Standard Kinetic Parameters for C-Peptide Clearance. Diabetes. 1992 Jan 3;41(3):368–77.
- 11. Verbeke G. Conditional Linear Mixed Models. Am Stat. 2001;55(1):25–34.
- 12. Lixoft. MONOLIX [Internet]. 2016. Available from: http://lixoft.com/products/monolix/
- 13. DeFronzo RA, Stonehouse AH, Han J, Wintle ME. Relationship of baseline HbA1c and efficacy of current glucose-lowering therapies: a meta-analysis of randomized clinical trials. Diabet Med J Br Diabet Assoc. 2010 Mar;27(3):309–17.
- Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985 Jul;28(7):412–9.
- 15. Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000 Mar;23(3):295–301.
- 16. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999 Sep;22(9):1462–70.

Table S1. Scientific members of the consortium. First Name Middle Surname Affiliation long

First Name	name	Surname	Annauon long
Moustafa		Abdalla	Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
Jonathan		Adam	Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
Jerzy		Adamski	Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany, and Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
Kofi		Adragni	Eli Lilly and Company, Indianapolis, Indiana, USA
Rosa	L	Allesøe	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Kristine	Н	Allin	Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
Manimozhiyan		Arumugam	Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
Naeimeh		Atabaki Pasdar	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Tania		Baltauss	Translational & Clinical Research, Metabolism Innovation Pole, Institut de Recherches Internationales Servier, Suresnes Cedex, France
Karina		Banasik	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Patrick		Baum	Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach an der Riss, Germany
Jimmy	D	Bell	Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
Margit		Bergstrom	VO Endokrinologi, Enheten för diabetesstudier Lasarettsgatan 15, Skånes Universitetssjukhus i Lund, Sweden
Joline	W	Beulens	Department of Epidemiology & Biostatistics, Amsterdam UMC - location VUmc, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
Susanna		Bianzano	Boehringer Ingelheim International GmbH, Medicine Cardiometabolism and Respiratory, Ingelheim am Rhein, Germany
Roberto		Bizzotto	CNR Institute of Neuroscience, Padova, Italy
Amelie		Bonneford	Université de Lille, INSERM UMR 1283, CNRS UMR 8199, Institut Pasteur de Lille, EGID, Lille, France
Caroline	А	Brorsson	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Andrew	А	Brown	Population Health & Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
Søren		Brunak	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark, and Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
Louise		Cabrelli	Clinical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
Robert		Caiazzo	Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
Mickaël		Canouil	Université de Lille, INSERM UMR 1283, CNRS UMR 8199, Institut Pasteur de Lille, EGID, Lille, France
Matilda		Dale	Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, Sweden
David		Davtian	Population Health & Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
Adem	Y	Dawed	Population Health & Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
Federico		De Masi	Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
Nathalie	_	de Preville	Translational & Clinical Research, Metabolism Innovation Pole, Institut de Recherches Internationales Servier, Suresnes Cedex, France
Koen	F	Dekkers	Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
Emmanouil	Т	Dermitzakis	Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
Harshal	А	Deshmukh	Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
Christiane		Dings	Clinical Pharmacy, Saarland University, Saarbrücken, Germany
Louise		Donnelly	Population Health & Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
Avirup		Dutta	The Novo Nordisk Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark, DK-2200
Beate		Ehrhardt	Department of Mathematical Sciences, University of Bath, Bath, United Kingdom

First Name	Middle name	Surname	Affiliation long
Petra		Elders	Department of General Practice, Amsterdam UMC- location VUmc, Amsterdam Public Health research institute, Amsterdam, The Netherlands
Line		Engelbrechtsen	The Novo Nordisk Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark, DK-2100
Rebeca		Eriksen	Section for Nutrition Research, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
Juan		Fernandez	Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
Jorge		Ferrer	Institut d'Investigacions Biomediques August Pi i Sunye, Centre Esther Koplowitz, Barcelona, Spain
Hugo		Fitipaldi	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Ian	М	Forgie	Population Health & Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
Annemette		Forman	The Novo Nordisk Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark, DK-2101
Paul	W	Franks	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Francesca		Frau	Digital and Data Sciences, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
Andreas		Fritsche	Medizinische Universitätsklinik Tübingen, Eberhard Karls Universität Tübingen, Tübingen, Germany
Philippe		Froguel	Université de Lille, INSERM UMR 1283, CNRS UMR 8199, Institut Pasteur de Lille, EGID, Lille, France, and Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
Gary		Frost	Section for Nutrition Research, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, United Kingdom
Johann		Gassenhuber	Diabetes Division, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
Nick	Ν	Giordano	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Toni		Giorgino	Biophysics Institute (IBF-CNR), National Research Council of Italy, Milan, Italy, and Department of Biosciences, University of Milan, Milan, Italy
Stephen		Gough	Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK OX3 7LJ
Ulrike	U	Graefe-Mody	Boehringer Ingelheim International GmbH, Therapeutic Area CNS, Retinopathies and Emerging Areas, Ingelheim am Rhein, Germany
Harald		Grallert	Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany, and German Center for Diabetes Research (DZD), Neuherberg, Germany
Rolf		Grempler	Boehringer Ingelheim International GmbH, Translational Medicine & Clinical Pharmacology, Biberach an der Riss, Germany
Lenka		Groeneveld	Department of Epidemiology & Biostatistics, Amsterdam UMC- location VUmc, Amsterdam Public Health research institute, Amsterdam, The Netherlands
Leif		Groop	Department of Clinical Sciences, Diabetes & Endocrinology Unit, Lund University, Skåne University Hospital Malmö, CRC, 91-12, 205 02, Malmö, Sweden
Valborg		Gudmundsdóttir	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Mark		Haid	Research Unit of Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Neuherberg, Germany
Torben		Hansen	Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
Tue	Н	Hansen	Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
Andrew	Т	Hattersley	Institute of Clinical and Biological Sciences, University of Exeter Medical School, Exeter, United Kingdom
Ragna		Haussler	Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, Sweden
Alison	J	Heggie	Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
Anita	М	Hennige	Boehringer Ingelheim International GmbH, Medicine Cardiometabolism and Respiratory, Biberach an der Riss, Germany
Anita	V	Hill	NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
Reinhard	W	Holl	Institute for Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
Mun-Gwan		Hong	Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, Sweden
Michelle		Hudson	NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
Bernd		Jablonka	Strategy & Innovation, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
Christopher		Jennison	Department of Mathematical Sciences, University of Bath, Bath, United Kingdom

First Name	Middle name	Surname	Affiliation long
Yunlong		Jiao	Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK,
Joachim		Johansen	OX3 7LJ Center for Biological Sequence Analysis, Department of Systems Biology, Technical
	G		University of Denmark, Kongens Lyngby, Denmark Institute of Clinical and Biological Sciences, University of Exeter Medical School, Exeter,
Angus	G	Jones	United Kingdom
Anna		Jonsson	The Novo Nordisk Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark, DK-2100
Tugce		Karaderi	Center for Biological Sequence Analysis, Department of Systems Biology, Technical
Jane		Kaye	University of Denmark, Kongens Lyngby, Denmark Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, United Kingdom, and Centre for Health, Law and Emerging Technologies (HeLEX), Melbourne Law School, University of Melbourne, Carlton, Victoria, Australia
Maria		Klintenberg	VO Endokrinologi, Enheten för diabetesstudier Lasarettsgatan 15, Skånes Universitetssjukhus i
Robert	W	Koivula	Lund, Sweden Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom, and Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Tarja		Kokkola	Department of Medicine, University of Eastern Finland, Kuopio, Finland
Anitra	D	Koopman	Department of Epidemiology & Biostatistics, Amsterdam UMC- location VUmc, Amsterdam Public Health research institute, Amsterdam, The Netherlands
Azra		Kurbasic	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of
Teemu		Kuulasmaa	Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio,
Markku		Laakso	Finland Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio,
Thorsten		Lehr	Finland Clinical Pharmacy, Saarland University, Saarbrücken, Germany
Heather		Loftus	Clinical Research Centre, Ninewells Hospital and Medical School, University of Dundee,
Agnete	Т	Lundgaard	Dundee, Scotland, United Kingdom Novo Nordisk Foundation Center for Protein Research, University of Copenhagen,
Anubha		Mahajan	Copenhagen, Denmark Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
Andrea		Mari	CNR Institute of Neuroscience, Padova, Italy
Gianluca		Mazzoni	Center for Biological Sequence Analysis, Department of Systems Biology, Technical
Mark	Ι	McCarthy	 University of Denmark, Kongens Lyngby, Denmark Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom, and Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, and Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
Timothy	J	McDonald	Institute of Clinical and Biological Sciences, University of Exeter Medical School, Exeter, United Kingdom, and Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
Donna		McEvoy	Clinical Research Facility, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
Nicky		McRobert	Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
Ian		McVittie	Diabetes Research Network, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
Miranda		Mourby	Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, United Kingdom
Petra	В	Musholt	R&D Global Development, Translational Medicine & Clinical Pharmacology (TMCP), Sanofi- Aventis Deutschland GmbH, Frankfurt, Germany
Pascal		Mutie	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Rachel		Nice	Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
Claudia		Nicolay	Lilly Deutschland GmbH, Bad Homburg, Germany
Agnes	М	Nielsen	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Birgitte		Nilsson	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Colin	Ν	Palmer	Population Health & Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
			Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
Francois		Pattou	insenti, Oniv Line, CHO Line, Line Fasteur Institute, EOD, Line, Marce
Francois Imre		Pattou Pavo	Eli Lilly Regional Operations GmbH, Vienna, Austria

First Name	Middle name	Surname	Affiliation long
Helle	K	Pedersen	Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
Oluf		Pedersen	Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
Mandy	Н	Perry	Blood Sciences, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
Hugo		Pomares-Millan	Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Sciences, CRC, Lund University, SUS, Malmö, Sweden
Simon		Rasmussen	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Violeta		Raverdy	Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
Martin		Ridderstrale	Clinical Pharmacology and Translational Medicine, Novo Nordisk A/S, Søborg, Denmark
Neil		Robertson	Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK, OX3 7LJ
Slieker	C	Roderick	Department of Epidemiology and Biostatistics, Amsterdam Public Health Institute, Amsterdam UMC, location VUMC, Amsterdam, the Netherlands, and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
Marianne		Rodriquez	Biotech&Biomarkers Research Department, Institut de Recherches Internationales Servier, Croissy sur Seine, France
Hartmut		Ruetten	R&D Global Development, Translational Medicine & Clinical Pharmacology (TMCP), Sanofi- Aventis Deutschland GmbH, Frankfurt, Germany
Femke		Rutters	Department of Epidemiology & Biostatistics, Amsterdam UMC- location VUmc, Amsterdam Public Health research institute, Amsterdam, The Netherlands
Peter	W	Sackett	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Nina		Scherer	Clinical Pharmacy, Saarland University, Saarbrücken, Germany
Jochen	М	Schwenk	Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, Sweden
Nisha		Shah	Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, United Kingdom
Sapna		Sharma	Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany, and German Center for Diabetes Research (DZD), Neuherberg, Germany
Iryna		Sihinevich	Clinical Pharmacy, Saarland University, Saarbrücken, Germany
Nadja	В	Sondertoft	The Novo Nordisk Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark, DK-2200
Hans-Henrik		Staerfeldt	Center for Biological Sequence Analysis, Dept. of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Birgit		Steckel- Hamann	Eli Lilly Regional Operations GmbH, Vienna, Austria
Leen	М	t Hart	Department of Epidemiology & Biostatistics, Amsterdam UMC- location VUmc, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands, and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands, and Department of Biomedical Data Sciences, Molecular Epidemiology section, Leiden University Medical Center, Leiden, the Netherlands
Harriet		Teare	Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, United Kingdom
Cecilia	Е	Thomas	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
Melissa	К	Thomas	Eli Lilly and Company, Indianapolis, Indiana, USA
Elizabeth	L	Thomas	Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
Henrik	S	Thomsen	Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen
Barbara		Thorand	Institute of Epidemiology II, Research Unit of Diabetes Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany, and German Center for Diabetes Research (DZD), Neuherberg, Germany
Claire	Е	Thorne	NIHR Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, United Kingdom
Joachim		Tillner	Clinical Operations, Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
Martina		Troll	Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
Konstantinos	D	Tsirigos	Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark, and Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
Andrea		Tura	CNR Institute of Neuroscience, Padova, Italy
Mathias		Uhlen	Systems Biology, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, Sweden

First Name	Middle name	Surname	Affiliation long
Nienke		van Leeuwen	Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
Helene		Verkindt	Inserm, Univ Lille, CHU Lille, Lille Pasteur Institute, EGID, Lille, France
Henrik		Vestergaard	Bornholms Hospital, Rønne, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
Ana		Viñuela	Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
Josef	К	Vogt	The Novo Nordisk Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark, DK-2201
Dianne		Wake	Diabetes Research Network, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
Mark		Walker	Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
Agata		Wesolowska- Andersen	Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
Brandon		Whitcher	Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London, United Kingdom
Han		Wu	Eli Lilly and Company, Indianapolis, Indiana, USA

Table S2. Subjects' baseline traits.

Trait	Abbreviation	Baseline value [*]	N
Age (years)	age	62±8	732
Sex (males)	-	58	732
Body mass index (kg/m ²)	BMI	30.4±4.9	732
Waist circumference (cm)	waist	103±13	727
Systolic blood pressure (mm Hg)	BPsys	131±16	621
Diastolic blood pressure (mm Hg)	BPdia	75±10	621
Type 2 diabetes family history	-	39	682
On metformin [†]	-	34	732
Metformin dosage for subjects on metformin (g) [†]	-	1.0±0.5	732
HbA _{1c} (%, mmol/mol)	HbA _{1c}	6.41±0.53, 46.5±5.8	728
Fasting glucose (mmol/l) [†]	gb	7.1±1.4	731
Fasting insulin (pmol/l) [†]	ib	106±69	730
Mean MMTT glucose (mmol/l) [†]	gm	9.3±2.1	730
Mean MMTT insulin (pmol/l) [†]	im	459±279	730
Fasting insulin secretion (pmol min ⁻¹ m ⁻²) ^{\dagger}	ISRb	136±48	730
Total MMTT insulin secretion (nmol/m ²) [†]	ISRtot	44±15	730
Fasting triacylglycerol (mmol/l)	TG	1.51±0.78	732
Fasting total cholesterol (mmol/l)	СНО	4.22±1.15	732
Fasting LDL-cholesterol (mmol/l)	LDL	2.34±0.95	727
Fasting HDL-cholesterol (mmol/l)	HDL	1.18±0.39	732
Aspartate aminotransferase (U/I)	AST	25.6±11.1	732
Alanine aminotransferase (U/l)	ALT	26.2±13.8	732
AST/ALT ratio (unitless)	AST/ALT	1.09±0.48	732
Gamma-glutamyl transferase (U/l)	GGT	51±71	732
Serum creatinine (µmol/l)	SCr	74.7±17.9	732
Serum albumin (g/l)	ALB	39.7±2.6	165
Fasting intact glucagon-like peptide-1 (pg/ml)	iGLP1	0.64±0.91	725
Fasting total glucagon-like peptide-1 (pg/ml)	tGLP1	9.5±9.3	723
1-h total glucagon-like peptide-1 (pg/ml)	tGLP1.60	9.5±9.5	724
Fasting glucagon (pg/ml)	GLG	111±52	722
	GLG.60	107±39	704
1-h glucagon (pg/ml)	GLG.00 GLG.120	107±39 103±25	184
2-h glucagon (pg/ml)			718
1-h GLP-1 increment (pg/ml)	GLP1inc.60	9.8±12.7	
1-h glucagon increment (pg/ml)	GLGinc.60	-3±52	693
2-h glucagon increment (pg/ml)	GLGinc.120	-6±33	183
1-h intact proinsulin (pmol/l)	proins.60	22±14	359
1-h intact proinsulin to insulin ratio (unitless)	proins/ins.60	0.05±0.04	358
Insulin sensitivity (ml min ⁻¹ m ⁻²)	OGIS	300±74	728
Fasting insulin sensitivity (unitless)	QUICKI	0.136±0.014	730
β-cell glucose sensitivity (pmol min ⁻¹ m ⁻² mmol ⁻¹ l)	GS	85±56	714
β-cell rate sensitivity (pmol m ⁻² mmol ⁻¹ l)	RS	1138±1102	714
Insulin secretion rate at 8 mmol/l glucose (pmol min ⁻¹ m ⁻²)	ISRstd	228±135	714
Potentiation factor ratio (unitless)	PR	1.4±0.6	713
Fasting insulin clearance (1 min ⁻¹ m ⁻²)	CLIb	1.60 ± 1.02	730
MMTT insulin clearance (l min ⁻¹ m ⁻²)	CLIm	0.93±0.30	730
Hepatic steatosis index (unitless)	HSI	41.5±5.9	730
Fatty liver index (unitless)	FLI	67±27	725
Type 2 diabetes polygenic risk score (unitless)	PRS	25.2±0.7	732
Liver fat (%)	liver fat	9±7	480

Trait	Abbreviation	Baseline value [*]	N
Liver iron content (mg/g tissue)	liver iron	1.6±0.5	486
Pancreas fat (%)	pancreas fat	12±8	488
Pancreas iron content (mg/g tissue)	pancreas iron	1.4±0.5	509
Intra-abdominal adipose tissue (l)	visceral fat	5.5±2.2	429
Abdominal subcutaneous adipose tissue (l)	subcutaneous fat	8.0±3.7	429
Physical activity intensity (mg)	PA	35±10	674
Sedentary behavior (% of time)	SED	83±4	674
Smoking habits (%, current, ex, never)	-	13, 50, 37	732
Average alcohol consumption (%, regularly, occasionally, never)	-	58, 25, 17	732
24-h energy intake (kcal)	-	1828±625	644
24-h protein intake (g)	-	89±35	644
24-h fat intake (g)	-	73±34	644
24-h saturated fat intake (g)	-	26±14	644
24-h added sugars intake (g)	-	65±40	644
24-h carbohydrate intake (g)	-	221±91	644
24-h energy intake-adjusted non-starch polysaccharides (g/kcal)	-	8.7±3.3	644
24-h energy intake-adjusted fruit & vegetables (g/kcal)	-	227±145	644
24-h energy intake-adjusted wholegrains (g/kcal)	-	26±22	644
24-h energy intake-adjusted fish (g/kcal)	-	20±39	644
24-h energy intake-adjusted red meat (g/kcal)	-	46±49	644
24-h percentage of total energy intake from protein (%)	-	20±6	644
24-h percentage of total energy intake from fat (%)	-	36±9	644
24-h percentage of total energy intake from saturated fat (%)	-	13±5	644
24-h percentage of total energy intake from added sugars (%)	-	19±8	644
24-h percentage of total energy intake from carbohydrate (%)	-	49±11	644
Healthy diet indicator	HDI	4.7±2.6	644
Healthy diet indicator quartiles (% in quartiles 1, 2, 3 and 4)	-	23, 25, 26, 26	644

* Data are mean \pm standard deviation of the inter-individual distribution, or percentage.

[†] Trait not included in the stepwise multivariable analyses.

MMTT: mixed meal test.

Table S3. Maximum doses for antidiabetic drugs different from insulin.

Drug	Max Dose (mg)	Weekly (W) or Daily (D)
Acarbose	600	D
Metformin	3000	D
Dapagliflozin	10	D
Empagliflozin	25	D
Alogliptin	25	D
Sitagliptin	100	D
Dulaglutide	1.5	W
Liraglutide	1.8	D
Gliclazide	320	D
Glimepiride	4	D
Glipizide	20	D
Tolbutamide	2000	D

Table S4. Parameter estimates of the HbA_{1c} progression model.

Parameter	Estimate	RSE (%)
r (%/year, mmol mol ⁻¹ year ⁻¹)	$0.0627, 0.685^*$	17
BMI effect (% kg ⁻¹ m ⁻² , mmol mol ⁻¹ kg ⁻¹ m ⁻²)	0.131, 1.43	8
Metformin effect: <i>a</i> (%, mmol/mol)	-0.0942, -1.03	74
Metformin effect: <i>b</i> (%, mmol/mol)	-0.00145, -0.0159	101
Metformin effect with 100% dose (%, mmol/mol)	-0.240, -2.62	-
Other antidiabetic treatment effect: a (%, mmol/mol)	-0.0970, -1.06	153
Other antidiabetic treatment effect: b (%, mmol/mol)	-0.00161, -0.0176	138
Other antidiabetic treatment effect with 100% dose (%, mmol/mol)	-0.258, -2.82	-
Insulin effect (%, mmol/mol)	-0.0970, -1.06	205
Assay delay effect (%/day, mmol mol ⁻¹ day ⁻¹)	-0.00047, -0.00516	19

RSE: relative standard error of the estimate.

^{*} Mean value of the population distribution.

Trait	Abbreviation	Progression rate [*]	95% CI	Relative progression rate [†]	N	
Body mass index (kg m ⁻² year ⁻¹)	BMI	-0.0089±0.52	-0.058,0.040	-0.03	732	
Waist circumference (cm year ⁻¹)	waist	0.54±1.3	0.37,0.71	0.52	719	
HbA _{1c} (%/year, mmol mol ⁻¹ year ⁻¹)	HbA _{1c}	0.063±0.18, 0.69±2.0	0.041,0.085, 0.45,0.93	0.98, 1.47	732	
Total MMTT insulin secretion (nmol m ⁻² year ⁻¹) [‡]	ISRtot	$0.44{\pm}2.4$	0.13,0.75	1.00	653	
Fasting triacylglycerol (mmol l ⁻¹ year ⁻¹)	TG	0.038±0.14	0.016,0.060	2.50	719	
Fasting total cholesterol (mmol l ⁻¹ year ⁻¹)	CHO	-0.012±0.22	-0.039,0.015	-0.28	719	
Fasting LDL-cholesterol (mmol l ⁻¹ year ⁻¹)	LDL	-0.046±0.18	-0.070,-0.023	-1.94	713	
Fasting HDL-cholesterol (mmol l ⁻¹ year ⁻¹)	HDL	0.016±0.040	0.009,0.023	1.36	719	
Aspartate aminotransferase (U l ⁻¹ year ⁻¹)	AST	1.2±3.6	0.77,1.63	4.77	719	
Alanine aminotransferase (U l ⁻¹ year ⁻¹)	ALT	0.53±10	-0.39,1.45	2.01	719	
AST/ALT ratio (year ⁻¹)	AST/ALT	0.039±0.04	0.024,0.054	3.61	719	
Serum creatinine (µmol l ⁻¹ year ⁻¹)	SCr	-0.21±1.2	-0.58,0.16	-0.29	719	
Insulin sensitivity (ml min ⁻¹ m ⁻² year ⁻¹)	OGIS	-8.5±19	-10.7,-6.3	-2.82	649	
Fasting insulin sensitivity (year ⁻¹)	QUICKI	-0.0013±0.0025	-0.0016,-0.0010	-0.95	653	
β -cell glucose sensitivity (pmol min ⁻¹ m ⁻² mmol ⁻¹ l year ⁻¹)	GS	-1.9±5.0	-3.4,-0.4	-2.19	653	
β -cell rate sensitivity (pmol m ⁻² mmol ⁻¹ l year ⁻¹)	RS	-22±98	-57,13	-1.91	653	
Insulin secretion rate at 8 mmol/l glucose (pmol min ⁻¹ m ⁻² year ⁻¹)	ISRstd	-5.2±19	-8.5,-1.9	-2.29	653	
Potentiation factor ratio (year ⁻¹)	PR	-0.0035±0.11	-0.023,0.016	-0.25	652	
Fasting insulin clearance (1 min ⁻¹ m ⁻² year ⁻¹)	CLIb	-0.039±0.34	-0.070,-0.008	-2.46	653	
MMTT insulin clearance (l min ⁻¹ m ⁻² year ⁻¹)	CLIm	-0.00069±0.046	-0.0072,0.0058	-0.07	653	
Hepatic steatosis index (year ⁻¹)	HSI	-0.31±0.68	-0.40,-0.22	-0.74	717	

* Data are mean \pm standard deviation of the inter-individual distribution, and are expressed as units/year (e.g. %/year or mmol mol⁻¹ year⁻¹ for HbA_{1c}).

[†] Ratio between mean progression rate and mean baseline value (from Table S2), as percentage per year. [‡] Progression rate not included in the stepwise multivariable analyses.

CI: confidence interval on the estimate of the mean; MMTT: mixed meal test.

Model	Sex	Age bas	OGIS progr	CLIm progr	GS progr	TG progr	HDL progr	RS progr	OGIS bas	CLIm bas	HbA1c bas	GS bas	BMI bas	HDL bas	Visceral fat bas	Liver fat bas	Adjusted R ²	Ν
-1	-	-	-0.24***	0.16***	-0.23***	0.25***	-0.11**	$-0.07^{0.07}$	-0.11**	-0.11**	$0.02^{0.58}$	$-0.06^{0.13}$	0.15***	-0.18***	0.27***	0.19***	-	625*
0	$-0.04^{0.61}$	-0.15***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	625
1	$0.12^{0.08}$	-0.03 ^{0.31}	-0.57***	0.28***	-0.25***	0.15***	-0.14***	-0.09*	-0.52***	0.21***	-0.20***	-0.14***	0.10**	-0.10*	-	-	0.38	625
2	0.21*	-0.08*	-0.61***	-0.08*	-0.27***	0.30***	-0.11*	0.13**	-0.53***	0.22***	-0.22***	-0.15**	0.09 ^{0.07}	-0.05 ^{0.37}	-	-	0.40	407 (liver fat bas available)
3	$0.15^{0.10}$	-0.06 ^{0.16}	-0.60***	-0.12**	-0.28***	0.25***	-0.14**	0.17***	-0.57***	0.22***	-0.20***	-0.17**	0.06 ^{0.24}	-0.11 ^{0.05}	-	-	0.40	373 (visceral fat bas available)
4	0.18*	$-0.08^{0.06}$	-0.59***	-0.08*	-0.28***	0.30***	-0.11*	0.13**	-0.49***	0.24***	-0.24***	-0.16**	$0.08^{0.10}$	-0.03 ^{0.51}	-	0.10*	0.40	407
5	0.25*	$-0.08^{0.06}$	-0.58***	-0.12**	-0.27***	0.24***	-0.13**	0.17***	-0.55***	0.24***	-0.21***	-0.16**	$0.01^{0.87}$	$-0.11^{0.06}$	0.14*	-	0.41	373
6	0.14 ^{0.14}	-0.08 ^{0.7}	-0.63***	0.25***	-0.26***	0.17***	-0.10*	-0.10*	-0.54***	0.21***	-0.21***	-0.16**	-	-	-	0.12*	0.40	320 (both visceral fat bas and liver fat bas available)
7	0.26**	-0.11*	-0.63***	0.25***	-0.25***	0.16***	-0.08 ^{0.10}	-0.11*	-0.56***	0.23***	-0.20***	-0.14*	-	-	0.16**	-	0.41	320 (both visceral fat bas and liver fat bas available)
8	0.17*	-0.09*	-0.61***	0.30***	-0.27***	0.13**	-0.10*	$-0.08^{0.06}$	-0.50***	0.19***	-0.23***	-0.16**	-	-	-	0.11*	0.40	408
9	0.19*	-0.09*	-0.62***	0.24***	-0.16**	0.18***	-0.10*	-0.12**	-0.56***	0.21***	-0.20***	-0.16**	-	-	0.15**	-	0.40	374

Table S6. Standardized coefficients (with p values as superscripts) and adjusted R^2 from multivariable linear analysis of HbA_{1c} progression rate.

Model (-1): HbA_{1c} progression rate = sex + age bas + center + variable (each column represents a specific model, and the various models are given in a unique row for sake of clarity).

Model (0): HbA_{1c} progression rate = sex + age bas + center.

Model (1): HbA_{1c} progression rate = sex + age bas + center + OGIS progr + CLIm progr + GS progr + TG progr + HDL progr + RS progr + OGIS bas + CLIm bas + HbA_{1c} bas + GS bas + BMI bas + HDL bas. This is the model in Figure 1, panel A.

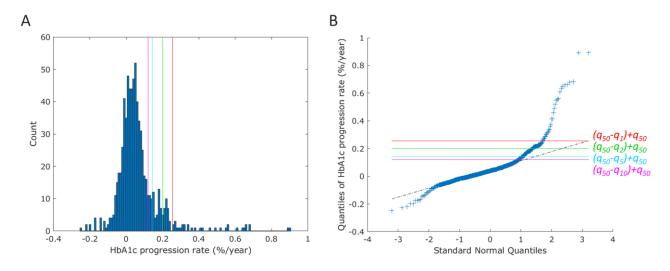
Model (2): Model (1), with different N (see last column).

Model (3): Model (1), with different *N* (see last column).

Model (4): Model (1) + liver fat bas.

Model (5): Model (1) + visceral fat bas.

Model (6): HbA_{1c} progression rate = Sex + Age bas + center + OGIS progr + CLIm progr + GS progr + TG progr + HDL progr + RS progr + OGIS bas + CLIm bas + HbA_{1c} bas + GS bas + liver fat bas.


Model (7): HbA_{1c} progression rate = Sex + Age bas + center + OGIS progr + CLIm progr + GS progr + TG progr + HDL progr + RS progr + OGIS bas + CLIm bas + HbA_{1c} bas + GS bas + visceral fat bas.

Model (8): Model (6), with different *N* (see last column).

Model (9): Model (7), with different N (see last column). This is the model in Figure 1, panel B.

* N = 320 for columns Visceral fat bas and Liver fat bas.

OGIS: insulin sensitivity; CLIm: mixed meal test insulin clearance; GS: β -cell glucose sensitivity; TG: fasting triacylglycerol; HDL: fasting HDL-cholesterol; RS: β -cell rate sensitivity; BMI: body mass index; progr: progression rate; bas: baseline value; *: p<0.05; **: p<0.01; ***: p<0.001.

Figure S1. Distribution of the estimated individual progression rates of HbA_{1c} (N=732), adjusted for changes in BMI and anti-diabetic medications. Panel A: histogram. Panel B: quantile-quantile plot. In both panels, four straight solid lines show four different thresholds used to split subjects into average and fast progressors. The thresholds were computed as ($q_{50} - q_n$) + q_{50} , where q_n and q_{50} are the nth and 50th quantiles of the distribution: the threshold used in the main text (n=1) is shown in red, three less conservative thresholds (n=2, 5 and 10) are shown in green, light blue and purple, respectively.

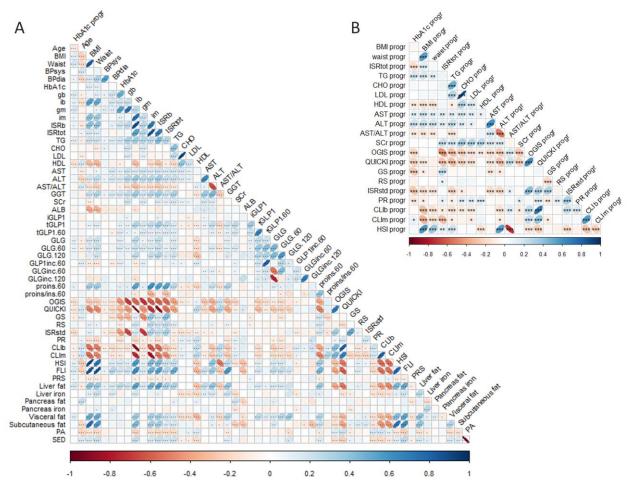
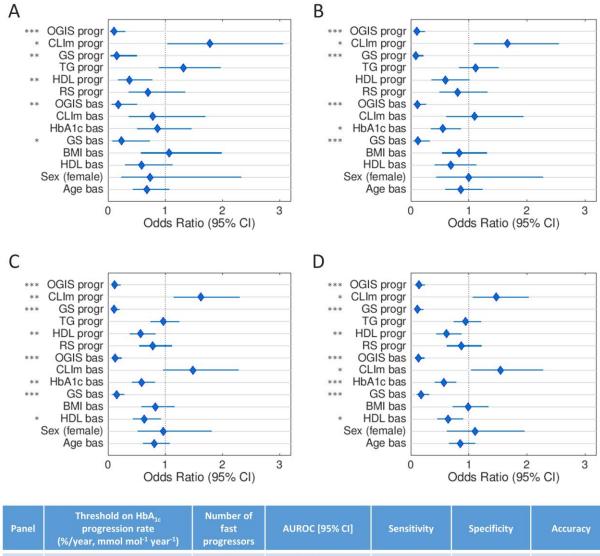



Figure S2. Pairwise correlation matrixes of the variables considered in this study (diet variables excluded as none was associated with HbA1c progression rate). Panel A: pairwise correlations among baseline values of the traits and HbA1c progression rates. Panel B: pairwise correlations among all the estimated progression rates. Correlations with HbA1c progression rates are displayed in the first columns of both panels. Fill color represents Spearman correlation coefficient, where positivity is denoted by red fill, negativity by blue fill, and magnitude by color intensity (see color bars) and by elliptic shape. BMI: body mass index; BPsys: systolic blood pressure; BPdia: diastolic blood pressure; gb: fasting glucose; ib: fasting insulin; gm: mean mixed meal test (MMTT) glucose; im: mean MMTT insulin; ISRb: fasting insulin secretion (ISR); ISRtot: total MMTT insulin secretion; TG: fasting triacylglycerol; CHO: fasting total cholesterol; LDL: fasting LDL-cholesterol; HDL: fasting HDL-cholesterol; AST: aspartate aminotransferase; ALT: alanine aminotransferase; AST/ALT: AST/ALT ratio; GGT: gamma-glutamyl transferase; SCr: serum creatinine; ALB: serum albumin; iGLP1: fasting intact glucagon-like peptide-1 (GLP-1); tGLP1: fasting total GLP-1; tGLP1.60: 1-h total GLP-1; GLG: fasting glucagon; GLG.60: 1-h glucagon; GLG.120: 2-h glucagon; GLP1inc.60: 1-h GLP-1 increment; GLGinc.60: 1-h glucagon increment; GLGinc.120: 2-h glucagon increment; proins.60: 1-h intact proinsulin; proins/ins.60: 1-h intact proinsulin to insulin ratio; OGIS insulin sensitivity; QUICKI: fasting insulin sensitivity; GS: β cell glucose sensitivity; RS: β -cell rate sensitivity; ISRstd: insulin secretion rate at 8 mmol/l glucose; PR: potentiation factor ratio; CLIb: fasting insulin clearance; CLIm: MMTT insulin clearance; HSI: hepatic steatosis index; FLI: fatty liver index; PRS: polygenic risk score; PA: physical activity intensity; SED: sedentary behavior; progr: progression rate; *: *p*<0.05; **: *p*<0.01; ***: *p*<0.001.

Panel	progression rate (%/year, mmol mol ⁻¹ year ⁻¹)	fast progressors	AUROC [95% CI]	Sensitivity	Specificity	Accuracy
А	0.255, 2.79	33	0.94 [0.87-0.97]	0.84	0.93	0.92
В	0.200, 2.19	61	0.93 [0.88-0.95]	0.86	0.88	0.88
С	0.143, 1.56	110	0.91 [0.87-0.93]	0.87	0.83	0.83
D	0.121, 1.32	131	0.89 [0.85-0.92]	0.81	0.84	0.84

Figure S3. Odds ratios \pm 95% confidence interval (CI) from the multivariable logistic analysis of fast *vs* average HbA_{1c} progressors, using different thresholds between the two groups. The independent variables are those identified by multivariable linear analysis of HbA_{1c} progression, excluding MRI variables (*N*=625). Panels A to D refer to progressively lower thresholds as shown in Figure S1 and in the summary table at the bottom. Age and HDL were log-transformed. Values for sensitivity, specificity and accuracy were derived via maximization of balanced accuracy. OGIS: insulin sensitivity; CLIm: mixed meal test insulin clearance; GS: β -cell glucose sensitivity; TG: fasting triacylglycerol; HDL: fasting HDL-cholesterol; RS: β -cell rate sensitivity; BMI: body mass index; progr: progression rate; bas: baseline value; AUROC: area under the receiver operating curve; *: *p*<0.05; **: *p*<0.01; ***: *p*<0.001.