## **1** Supplementary appendix

#### 2 Supplemental text

#### 3 Metadata in GNHS and the hip fracture case-control study

- 4 Metadata included in this study was further categorized into 4 groups:
- 5 1) 5 demographic factors: age, sex, household income, marital status and self-reported
- 6 educational level.
- 7 2) 10 lifestyle and dietary factors: physical activity, total energy intake, alcohol
- 8 drinking, smoking, tea drinking, vegetable intake, fruit intake, fish intake, red and
- 9 processed meat intake, and yogurt intake.
- 10 3) 5 blood test factors: Fasting glucose, HDL, LDL, TC, and TG.
- 4) 8 anthropometry factors: height, weight, hip circumference, waist circumference,
- 12 neck circumference, BMI, DBP, SBP.
- 13 Description of each factor in different cohorts is listed in Table 1.
- 14

15 Demographic, lifestyle and dietary factors were all collected by questionnaire during 16 on-site face-to-face interviews. Habitual dietary intakes over the past 12 months were 17 assessed by a food frequency questionnaire, as previously described (1). Physical activity was assessed as a total metabolic equivalent for task (MET) hours per day on 18 19 the basis of a validated questionnaire for physical activity (2). Anthropometric factors were measured by trained nurses on site during the baseline interview. Fasting venous 20 21 blood samples were taken at each recruitment or follow-up visit. Serum low-density lipoprotein cholesterol and glucose were measured by coloimetric methods using a 22

| 23                                     | Roche Cobas 8000 c702 automated analyzer (Roche Diagnostics GmbH, Shanghai,                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24                                     | China). Intra-assay coefficients of variation (CV) was 2.5% for glucose. Insulin was                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                                     | measured by electrochemiluminescence immunoassay (ECLIA) methods using a                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26                                     | Roche cobas 8000 e602 automated analyzer (Roche Diagnostics GmbH, Shanghai,                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 27                                     | China). High-performance liquid chromatography was used to measure glycated                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28                                     | hemoglobin (HbA1c) using the Bole D-10 Hemoglobin A1c Program on a Bole D-10                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 29                                     | Hemoglobin Testing System, and the intraassay CV was 0.75%. The whole-body                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 30                                     | composition was measured by dual-energy x-ray absorptiometry (DXA) (Discovery                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 31                                     | W; Hologic Inc.). We analyzed the lean mass, fat mass and bon mass of the whole                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 32                                     | body, arms, and legs using the Hologic Discovery software version 3.2 (3).                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34                                     | Stool sample collection and DNA extraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34<br>35                               | <b>Stool sample collection and DNA extraction</b><br>The stool samples were collected at a local study site within the School of Public                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 35                                     | The stool samples were collected at a local study site within the School of Public                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35<br>36                               | The stool samples were collected at a local study site within the School of Public<br>Health at Sun Yat-sen University, and were transferred to a -80°C facility within 4                                                                                                                                                                                                                                                                                                                                              |
| 35<br>36<br>37                         | The stool samples were collected at a local study site within the School of Public<br>Health at Sun Yat-sen University, and were transferred to a -80°C facility within 4<br>hours after collection. Total bacterial DNA was extracted using the QIAamp® DNA                                                                                                                                                                                                                                                           |
| 35<br>36<br>37<br>38                   | The stool samples were collected at a local study site within the School of Public<br>Health at Sun Yat-sen University, and were transferred to a -80°C facility within 4<br>hours after collection. Total bacterial DNA was extracted using the QIAamp® DNA<br>Stool Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions.                                                                                                                                                                    |
| 35<br>36<br>37<br>38<br>39             | The stool samples were collected at a local study site within the School of Public<br>Health at Sun Yat-sen University, and were transferred to a -80°C facility within 4<br>hours after collection. Total bacterial DNA was extracted using the QIAamp® DNA<br>Stool Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions.<br>DNA concentrations were measured using the Qubit quantification system (Thermo                                                                                  |
| 35<br>36<br>37<br>38<br>39<br>40       | The stool samples were collected at a local study site within the School of Public<br>Health at Sun Yat-sen University, and were transferred to a -80°C facility within 4<br>hours after collection. Total bacterial DNA was extracted using the QIAamp® DNA<br>Stool Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions.<br>DNA concentrations were measured using the Qubit quantification system (Thermo                                                                                  |
| 35<br>36<br>37<br>38<br>39<br>40<br>41 | The stool samples were collected at a local study site within the School of Public<br>Health at Sun Yat-sen University, and were transferred to a -80°C facility within 4<br>hours after collection. Total bacterial DNA was extracted using the QIAamp® DNA<br>Stool Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions.<br>DNA concentrations were measured using the Qubit quantification system (Thermo<br>Scientific, Wilmington, DE, US). The extracted DNA was then stored at -20 °C. |

| 45 | amplified from genomic DNA using primers 341F(CCTACGGGNGGCWGCAG) and                                                   |
|----|------------------------------------------------------------------------------------------------------------------------|
| 46 | 805R(GACTACHVGGGTATCTAATCC). Amplification was performed in 96-well                                                    |
| 47 | microtiter plates with a reaction mixture consisting of 1X KAPA HiFi Hot start Ready                                   |
| 48 | Mix, $0.1 \mu M$ primer 341 F, $0.1 \ \mu M$ primer 805 R, and 12.5 ng template DNA giving a                           |
| 49 | total volume of 50 $\mu$ L per sample. Reactions were run in a T100 PCR thermocycle                                    |
| 50 | (BIO-RAD) according to the following cycling program: 3 min of denaturation at                                         |
| 51 | 94 °C, followed by 18 cycles of 30 s at 94 °C (denaturing), 30 s at 55 °C (annealing),                                 |
| 52 | and 30 s at 72 $^{\rm o}{\rm C}$ (elongation), with a final extension at 72 $^{\rm o}{\rm C}$ for 5 min. Subsequently, |
| 53 | the amplified products were checked by 2% agarose gel electrophoresis and ethidium                                     |
| 54 | bromide staining. Amplicons were quantified using the Qubit quantification system                                      |
| 55 | (Thermo Scientific, Wilmington, DE, US) following the manufacturers' instructions.                                     |
| 56 | Sequencing primers and adaptors were added to the amplicon products in the second                                      |
| 57 | PCR step as follows 2 $\mu$ L of the diluted amplicons were mixed with a reaction                                      |
| 58 | solution consisting of $1 \times KAPA$ HiFi Hotstart ReadyMix, $0.5 \mu M$ fusion forward and                          |
| 59 | $0.5\mu M$ fusion reverse primer, 30 ng Meta-gDNA(total volume 50 $\mu L$ ). The PCR was                               |
| 60 | run according to the cycling program above except with cycling number of 12. The                                       |
| 61 | amplification products were purified with Agencourt AMPure XP Beads (Beckman                                           |
| 62 | Coulter Genomics, MA, USA) according to the manufacturer's instructions and                                            |
| 63 | quantified as described above. Equimolar amounts of the amplification products were                                    |
| 64 | pooled together in a single tube. The concentration of the pooled libraries was                                        |
| 65 | determined by the Qubit quantification system. Amplicon sequencing was performed                                       |
| 66 | on the Illumina MiSeq System (Illumina Inc., CA, USA). The MiSeq Reagent Kits v2                                       |

# 70 16S rRNA gene sequence data processing

71 Fastq-files were demultiplexed by the MiSeq Controller Software (Illumina Inc.). The

sequence was trimmed for amplification primers, diversity spacers, and sequencing

adapters, merge-paired and quality filtered by USEARCH. UPARSE was used for

74 OTU clustering equaling or above 97%. Taxonomy of the OTUs was assigned and

rs sequences were aligned with RDP classifier. The OTUs were analyzed by

76 phylogenetic and operational taxonomic unit (OTU) methods in the Quantitative

- 77 Insights into Microbial Ecology (QIIME) software version 1.9.0 (4). α-diversity
- 78 (Observed OTU number, Shannon index, Simpson index, Chao1 index, Goods
- roverage index) and  $\beta$ -diversity (Unweight UniFrac distances and Weight UniFrac

80 distances) measures were calculated based on the rarefied OTU counts.

81

#### 82 Type 2 diabetes risk variants and genetic risk score

83 We used 28 significant variants identified in a meta-analysis of CKB and AGEN-type

2 diabetes studies (5) to construct a type 2 diabetes genetic risk score(GRS) as

$$GRS_i = \sum_{j=1}^m x_{ij}b_j$$

Where,  $GRS_i$  is a genetic risk score for individual *i*, *m* is the number of SNPs in the score,  $x_{ij}$  represented the number of the risk allele on two chromosomes for *ith* individual and *jth* SNP,  $x_{ij} \in \{0,1,2\}, b_j$  represent the natural logarithm of the

| 89 | publ | lished | odds | ratio. |
|----|------|--------|------|--------|
|    |      |        |      |        |

# 91 Metagenomic sequencing

- Samples were metagenomically sequenced as one library each multiplexed through
  Illumina HiSeq machines and sequenced using the 2 × 100 bp paired-end read
  protocol. PRINSEQ v0.20.4 (6) was employed to sample dereplication and low
  complexity filtering. The length of each reads was trimmed with FASTX from the 5' e
  and 3' end using a quality threshold of 20. Read pairs with either reads was shorter
  than 60 bp or contained "N" were removed. 3) deduplicate the reads. Bowtie2 v2.2.5
- 98 (7) (using --reorder --no-contain --dovetail) was used to map reads to the human
- 99 genome for decontamination.
- 100

#### 101 **Taxonomy analysis**

102 Taxonomic profiling of the metagenomic samples was performed using MetaPhlAn2

103 v2.6.02, which uses a library of clade-specific markers to provide pan-microbial

104 (bacterial, archaeal, viral and eukaryotic) quantification at the species level.

105 MetaPhlAn2 (8) was run using default settings.

106

#### 107 Metabolomics profiling of human serum samples

108 For the discovery cohort and external validation cohort1, targeted identification and

109 quantification of serum metabolites was performed using an ultra-performance liquid

110 chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) system. This

platform provides measures of 199 serum metabolome traits, including 12 subclasses.

| 113 | All of the standards of targeted metabolites were commercially purchased from             |
|-----|-------------------------------------------------------------------------------------------|
| 114 | Sigma-Aldrich (St. Louis, MO, USA), Steraloids Inc. (Newport, RI, USA) and TRC            |
| 115 | Chemicals (Toronto, ON, Canada). All the standards were prepared in water,                |
| 116 | methanol, sodium hydroxide solution, or hydrochloric acid solution to obtain              |
| 117 | individual stock solution at a concentration of 5.0 mg/mL. Appropriate amount of          |
| 118 | each stock solution was mixed to create stock calibration solutions.                      |
| 119 | Samples were thawed on ice-bath to diminish sample degradation and prepared as            |
| 120 | follows: $25\mu L$ of plasma was added to a 96-well plate and then the plate was          |
| 121 | transferred to the Biomek 4000 workstation (Biomek 4000, Beckman Coulter, Inc.,           |
| 122 | Brea, California, USA). Three types of quality control samples i.e., test mixtures,       |
| 123 | internal standards, and pooled biological samples are routinely used in metabolomics      |
| 124 | platform. In addition to the quality controls, conditioning samples, and solvent blank    |
| 125 | samples are also required for obtaining optimal instrument performance. $100\mu L$ ice    |
| 126 | cold methanol with partial internal standards was automatically added to each sample      |
| 127 | and vortexed vigorously for 5 minutes. The plate was centrifuged at 4000g for 30          |
| 128 | minutes (Allegra X-15R, Beckman Coulter, Inc., Indianapolis, IN, USA). Then the           |
| 129 | plate was returned back to the workstation. $30\mu L$ of supernatant was transferred to a |
| 130 | clean 96-well plate, and $20\mu L$ of freshly prepared derivative reagents was added to   |
| 131 | each well. The plate was sealed and the derivatization was carried out at 30°C for 60     |
| 132 | min. After derivatization, $350\mu L$ of ice-cold 50% methanol solution was added to      |

| 133 | dilute the sample. Then the plate was stored at -20°C for 20 minutes and followed by       |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|
| 134 | 4000g centrifugation at 4 °C for 30 minutes. 135 $\mu$ L of supernatant was transferred to |  |  |
| 135 | a new 96-well plate with $15\mu L$ internal standards in each well. Serial dilutions of    |  |  |
| 136 | derivatized stock standards were added to the left wells. Finally, the plate was sealed    |  |  |
| 137 | for LC-MS analysis. The raw data files from UPLC-MS/MS were processed using the            |  |  |
| 138 | QuanMET software (v2.0, Metabo-Profile, Shanghai, China) to perform peak                   |  |  |
| 139 | integration, calibration, and quantitation for each metabolite.                            |  |  |
| 140 |                                                                                            |  |  |
| 141 | Classification Analysis                                                                    |  |  |
| 142 | To train and validate our model, we divided the discovery cohort into three parts          |  |  |
| 143 | randomly at a ratio of 6:2:2, which were allocated at the training cohort, internal        |  |  |
| 144 | validation cohort, and internal test cohort, respectively. The hyperparameters of the      |  |  |
| 145 | model were tuned on the internal validation cohort.                                        |  |  |
| 146 |                                                                                            |  |  |
| 147 | In the discovery cohort and external validation cohort 1, we calculated the area under     |  |  |
| 148 | the receiver operating curve (AUC) for type 2 diabetes prediction for the identified       |  |  |
| 149 | microbiota features, host genetics (type 2 diabetes genetic risk score), and the           |  |  |
| 150 | traditional type 2 diabetes risk factors including the Framingham-Offspring Risk           |  |  |
| 151 | Score (FORS) components(age, sex, parental history of diabetes, BMI, systolic blood        |  |  |
| 152 | pressure, high-density lipoprotein cholesterol, triglycerides, and waist circumference),   |  |  |
| 153 | lifestyle and dietary factors (current smoking status, current tea-drinking, current       |  |  |
| 154 | alcohol drinking, physical activity, total energy intake, vegetable intake, fish intake,   |  |  |

155

# 157 Microbiome risk score (MRS) formula

$$MRS_i = \sum_{j=1}^n s_{ij}$$

159 Where,  $MRS_i$  is a MRS for individual *i*,  $s_{ij} = \begin{cases} 0, if \ x_{shap,ij} < 0 \\ 1, if \ x_{shap,ij} > 0 \end{cases}$ ,  $s_{ij}$  is the

red and processed meat intake, fruit intake and yogurt intake).

160 microbiome risk score for the *jth* microbiome features in *ith* individual. n is the sum

161 of the microbiome features, and  $x_{shap,ij}$  is the SHAP value for the *jth* microbiome

162 features in *ith* individual.

163

### 164 Faecal suspension inoculum preparation and faecal microbiota transplantation

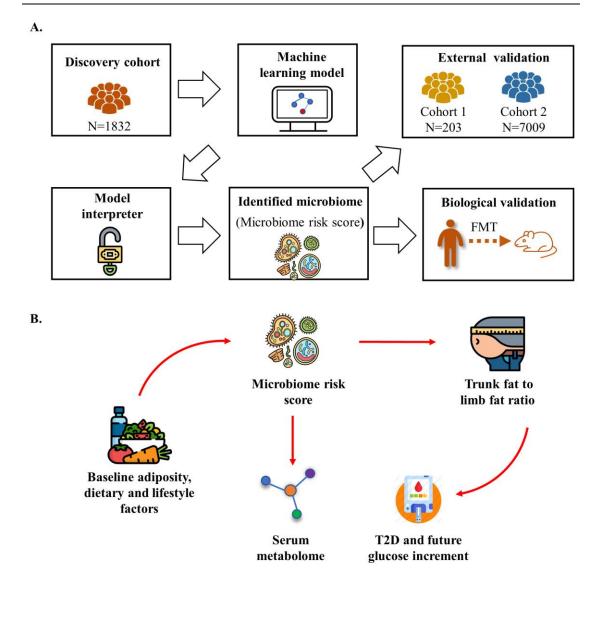
165 Nine participants were randomly selected as the representative donors according to

167 (1) Low MRS group: 3 participants, MRS=0, or MRS=1.

- 168 (2) High MRS + non-type 2 diabetes group: 3 participants, MRS=11.
- 169 (3) High MRS + type 2 diabetes group: 3 participants, MRS=13, or MRS=14.
- 170

## 171 Each fecal sample (0.5 g) was diluted in 5 mL of a 0.09% (w/v) sterile normal saline

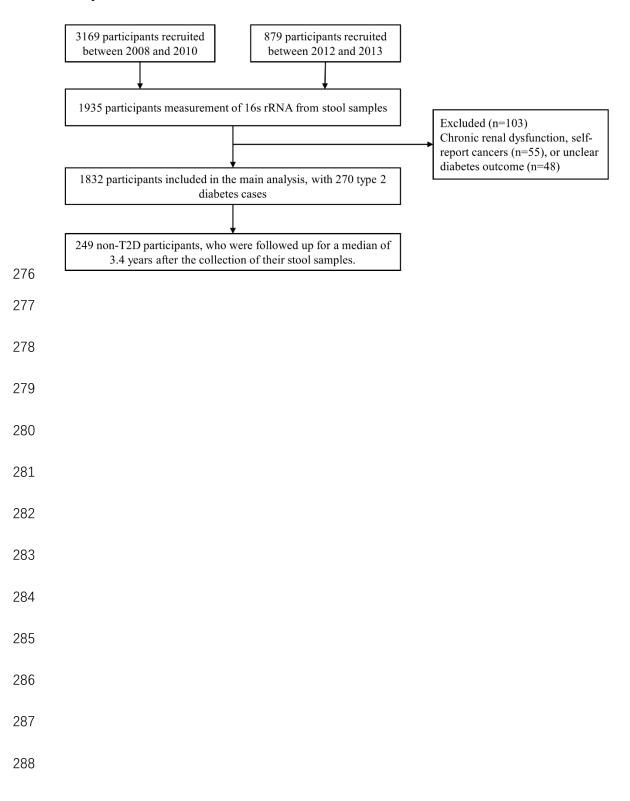
- in an anaerobic chamber (80% N<sub>2</sub>:10% CO<sub>2</sub>:10% H<sub>2</sub>). The fecal material was
- suspended by thorough vortexing (5 min) and centrifuged at 4 °C 300 rpm/min for 5
- 174 min. The clarified supernatant was transferred to a clean tube and used immediately
- 175 for gut microbiota transplantation. Surveillance for bacterial contamination was
- 176 performed by periodic bacteriological examinations of feces, food and padding.


| 177 | Normal saline was added into the samples with sufficient mixing. The mixtures were            |
|-----|-----------------------------------------------------------------------------------------------|
| 178 | then cultured using the spread plate method on: 1) LB agar, Brain Heart Infusion agar         |
| 179 | and Thioglycolate agar under aerobic condition at 37°C for aerobic bacteria; 2) on            |
| 180 | Gifu anaerobic medium (GAM) agar under anaerobic condition at 37°C for anaerobic              |
| 181 | bacteria; and 3) on Modified Martin Agar and Tryptone Soya agar under aerobic                 |
| 182 | condition at 25-28°C for fungi. All cultures were examined under optical microscope           |
| 183 | after 1, 2, 4, 7 and 14 days.                                                                 |
| 184 |                                                                                               |
| 185 | Weaned, germ-free male C57BL/6J mice ( $n = 40$ ) were maintained in flexible-film            |
| 186 | plastic isolators under a regular 12-h light cycle (lights on at 06:00). The mice were        |
| 187 | fed a sterilized normal chow diet (10% energy from fat; 3.25 kcal/g; SLAC). At 4              |
| 188 | weeks of age, the germ-free mice were housed in individual cages and randomly                 |
| 189 | divided into four groups (each group was kept in an individual isolator). After 1             |
| 190 | weeks of acclimatization, the CON group of mice $(n = 10)$ were orally gavaged with           |
| 191 | 100 $\mu$ L of normal saline, and the other three groups of mice ( $n = 10$ , per group) were |
| 192 | orally gavaged with 100 $\mu$ L of the fecal suspension inoculum (taken from the each of      |
| 193 | the above donor group, preparation methods see supplementary materials). All mice             |
| 194 | were fed a sterilized high-fat diet. On Day 0, 7 and 14, after 12 h of fasting, fasting       |
| 195 | glucose was measured through the tail vein (Sinocare, China).                                 |
| 196 |                                                                                               |

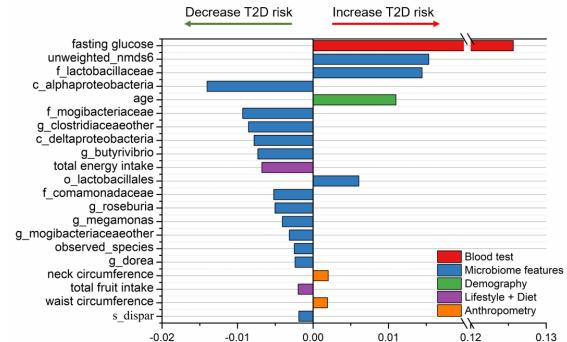
- 197
- 198

| 199 | Refe | rence                                                                           |
|-----|------|---------------------------------------------------------------------------------|
| 200 | 1.   | Zhang CX HS. Validity and reproducibility of a food frequency Questionnaire     |
| 201 |      | among Chinese women in Guangdong province. Asia Pac J Clin Nutr.                |
| 202 |      | 2009;18:240–50.                                                                 |
| 203 | 2.   | Liu B, Woo J, Tang N, Ng K, Ip R, Yu A. Assessment of total energy              |
| 204 |      | expenditure in a Chinese population by a physical activity questionnaire :      |
| 205 |      | examination of validity. Int J Food Sci Nutr. 2001;52:269-82.                   |
| 206 | 3.   | Chen Y, Liu Y, Liu Y, Wang X, Guan K, Zhu H. Higher serum concentrations        |
| 207 |      | of betaine rather than choline is associated with better pro fi les of DXA-     |
| 208 |      | derived body fat and fat distribution in Chinese adults. 2014;39(3):465–71.     |
| 209 | 4.   | Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello        |
| 210 |      | EK, et al. QIIME allows analysis of high-throughput community sequencing        |
| 211 |      | data. Nat Methods. 2010;7(5):335-6.                                             |
| 212 | 5.   | Gan W, Walters RG, Holmes M V., Bragg F, Millwood IY, Banasik K, et al.         |
| 213 |      | Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings |
| 214 |      | from 93,000 individuals from the China Kadoorie Biobank. Diabetologia.          |
| 215 |      | 2016;59(7):1446–57.                                                             |
| 216 | 6.   | Schmieder R, Edwards R. Quality control and preprocessing of metagenomic        |
| 217 |      | datasets. Bioinformatics. 2011;27(6):863-4.                                     |
| 218 | 7.   | Ben Langmead SLS. Fast gapped-read alignment with Bowtie 2. Nat Methods.        |
| 219 |      | 2012;9(4):357–9.                                                                |
| 220 | 8.   | Senavirathne G, Liu J, Jr MAL, Hanne J, Martin-lopez J, Lee J, et al.           |

| 221 | MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. |
|-----|-----------------------------------------------------------------------|
| 222 | 2015;12(10):902–3.                                                    |
| 223 |                                                                       |
| 224 |                                                                       |
| 225 |                                                                       |
| 226 |                                                                       |
| 227 |                                                                       |
| 228 |                                                                       |
| 229 |                                                                       |
| 230 |                                                                       |
| 231 |                                                                       |
| 232 |                                                                       |
| 233 |                                                                       |
| 234 |                                                                       |
| 235 |                                                                       |
| 236 |                                                                       |
| 237 |                                                                       |
| 238 |                                                                       |
| 239 |                                                                       |
| 240 |                                                                       |
| 241 |                                                                       |
| 242 |                                                                       |


| 243 | Fig.S1. Study overview. (A) Identifying microbiome features, together with their        |
|-----|-----------------------------------------------------------------------------------------|
| 244 | optimal threshold and direction associated with type 2 diabetes. 1) Training and        |
| 245 | optimizing a machine-learning model to link the input factors with type 2 diabetes in a |
| 246 | discovery cohort (n=1832, 270 cases); 2) Using SHAP method to explain the output        |
| 247 | of machine learning model and identify the microbiota pattern associated with type 2    |
| 248 | diabetes risk; 3) Constructing a microbiome risk score (MRS) for type 2 diabetes        |
| 249 | based on the above-identified microbiota pattern. 4) Validating the MRS-type 2          |
| 250 | diabetes association in two independent external validation cohorts: cohort 1 (n=203,   |
| 251 | 48 cases), cohort 2 (n=7009, 608 cases); 5) Validating the MRS-type 2 diabetes          |
| 252 | association by faecal microbiota transplantation (FMT). (B) Investigating the           |
| 253 | prospective association of baseline adiposity, dietary and lifestyle factors with the   |
| 254 | identified type 2 diabetes-related gut microbiota pattern (i.e., MRS), and the          |
| 255 | correlation of the MRS with host serum metabolome. Further, we investigated the role    |
| 256 | of body fat distribution linking the MRS and type 2 diabetes development in the         |
| 257 | discovery cohort and external validation cohort 1.                                      |
| 258 |                                                                                         |
| 259 |                                                                                         |
| 260 |                                                                                         |
| 261 |                                                                                         |
| 262 |                                                                                         |
| 263 |                                                                                         |
| 264 |                                                                                         |




- -

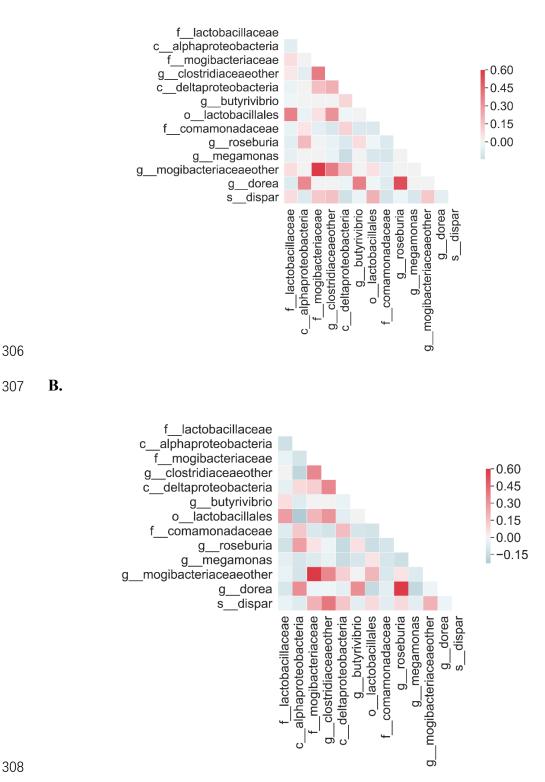
# 274 Fig.S2. Overview of the discovery cohort: Guangzhou Nutrition and Health

# **Study**

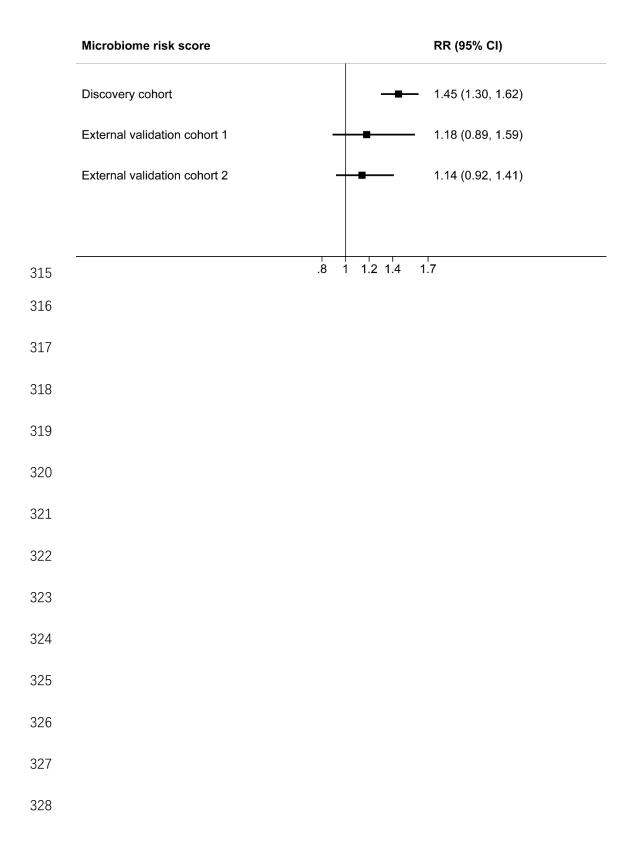


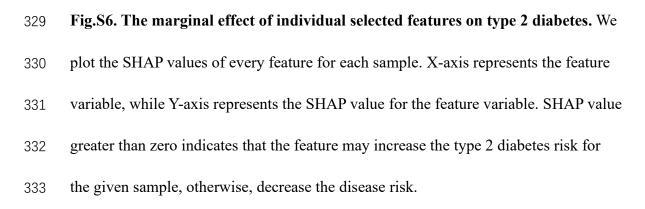
# 289 Fig.S3. The average impact of selected features on type 2 diabetes risk. The bars



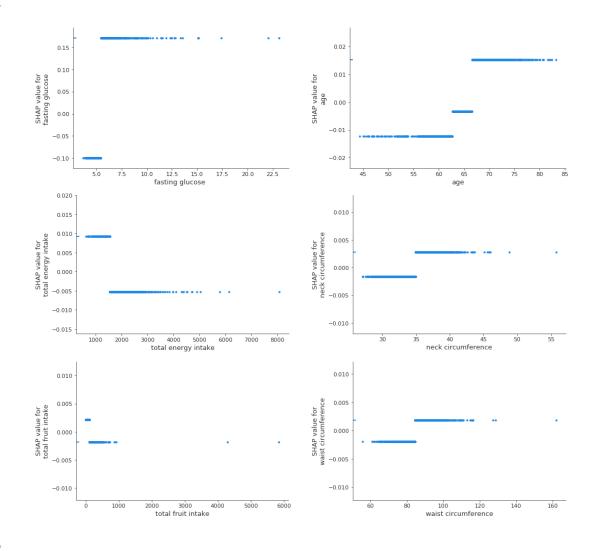

# 290 are colored according to data categories.

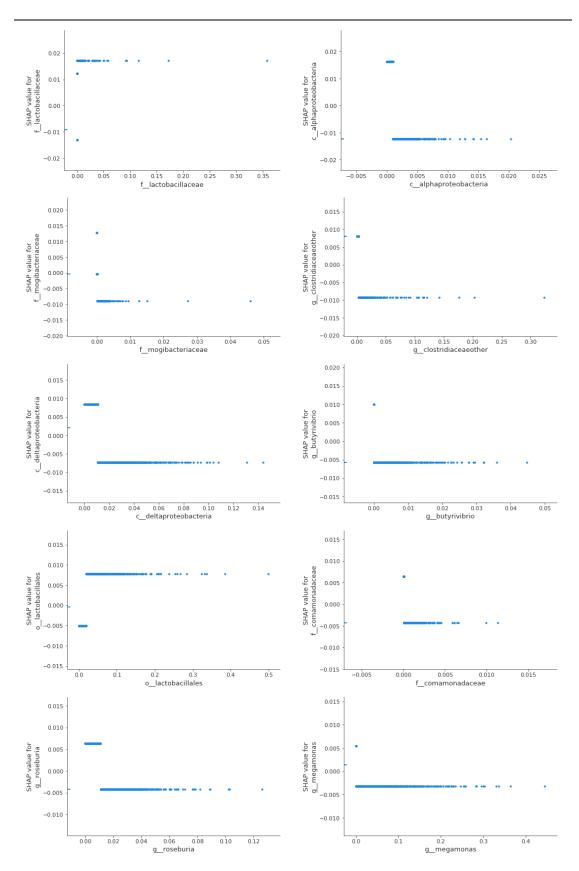
-0.01 0.01 -0.02 0.00 0.12 0.13 

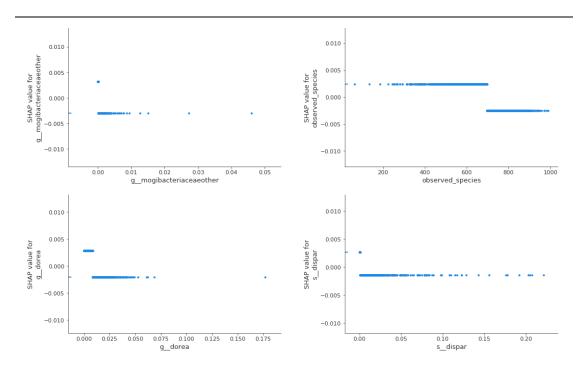

#### Fig.S4. The inter-correlation of selected taxa-related features in the discovery


#### cohort (A) and external validation cohort 1 (B).

A.





- 310 Fig.S5. Association of the microbiome risk score (MRS) with type 2 diabetes risk
- 311 in different cohorts. Poisson regression was used to estimate the risk ratio (RR) and
- 312 95% confidence interval (CI) of type 2 diabetes per one unit change in the MRS,
- adjusting for demographic, dietary and lifestyle factors. The MRS was constructed
- 314 based on the conventional method.















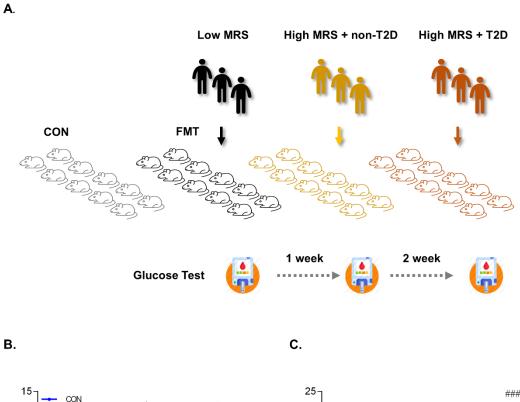

#### Fig.S7. Associations of the selected microbiome features with risk of type 2

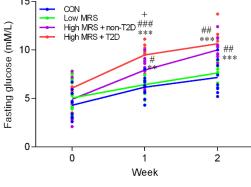
**diabetes.** In this graph, we only present the microbiome that was significantly associated with type 2 diabetes risk. (A) Multivariable Poisson regression model was used to examine the association with type 2 diabetes for each selected taxa-related feature at higher abundance (i.e., higher the optimal threshold) with those at lower abundance (i.e., lower the optimal threshold). Covariates included in the statistical models for the discovery cohort and external validation cohort 1 were as follows: age, sex, BMI, waist circumference, total energy intake, alcohol drinking, smoking, household income, marital status, and self-reported educational level. For external validation cohort 2, all aforementioned covariates but total energy intake (not collected in external validation cohort 2) were used in the statistical model. (B) Multivariable Poisson regression model was used to estimate type 2 diabetes risk per SD change in the selected taxa-related features, adjusted for the abovementioned covariates. A.

| Micro   | biome   | and c | aharte |
|---------|---------|-------|--------|
| wiici u | DIDILLE | anu u | Unuita |

| Microbiome and cohorts                                                                                                     | RR (95% CI)                                                                      |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| f_lactobacillaceae                                                                                                         |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 0.0%, p = 0.664)  | 1.41 (1.13, 1.75)<br>1.26 (0.68, 2.35)<br>1.23 (1.00, 1.50)<br>1.30 (1.13, 1.51) |
| fmogibacteriaceae                                                                                                          |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 86.8%, p = 0.001) | 0.50 (0.40, 0.62)<br>0.34 (0.20, 0.58)<br>0.83 (0.67, 1.04)<br>0.55 (0.34, 0.86) |
| gclostridiaceae spp                                                                                                        |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 3.8%, p = 0.354)  | 0.63 (0.50, 0.80)<br>0.84 (0.50, 1.43)<br>0.78 (0.64, 0.95)<br>0.72 (0.62, 0.84) |
| cdeltaproteobacteria                                                                                                       |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 29.1%, p = 0.244) | 0.68 (0.54, 0.85)<br>0.64 (0.38, 1.09)<br>1.01 (0.66, 1.55)<br>0.74 (0.58, 0.95) |
| o_lactobacillales                                                                                                          |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 0.0%, p = 0.993)  | 1.26 (1.02, 1.58)<br>1.30 (0.75, 2.23)<br>1.29 (1.00, 1.66)<br>1.28 (1.09, 1.50) |
| g_roseburia                                                                                                                |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 0.0%, p = 0.459)  | 0.59 (0.48, 0.73)<br>0.56 (0.33, 0.97)<br>0.71 (0.56, 0.90)<br>0.64 (0.55, 0.74) |
| gmogibacteriaceae spp                                                                                                      |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 84.8%, p = 0.001) | 0.51 (0.41, 0.65)<br>0.31 (0.17, 0.57)<br>0.81 (0.65, 1.00)<br>0.54 (0.35, 0.85) |
| gdorea                                                                                                                     |                                                                                  |
| Discovery cohort<br>External validation cohort 1<br>External validation cohort 2<br>Overall (I-squared = 9.5%, p = 0.331)  | 0.58 (0.47, 0.73)<br>0.80 (0.48, 1.33)<br>0.75 (0.52, 1.09)<br>0.65 (0.54, 0.79) |
|                                                                                                                            |                                                                                  |
| I<br>11                                                                                                                    | I<br>3                                                                           |

Risk ratio (95% CI) per SD higher microbiome relative abundance


B.


| f_lactobacillaceae                     |                           |
|----------------------------------------|---------------------------|
| Discovery cohort -                     | 1.07 (1.03, 1.11)         |
| External validation cohort 1           | - 1.11 (1.03, 1.20)       |
| External validation cohort 2           | 1.09 (1.07, 1.11)         |
| Overall (I-squared = 0.0%, p = 0.579)  | 1.09 (1.07, 1.10)         |
| o_lactobacillales                      |                           |
| Discovery cohort                       | 1.05 (0.96, 1.15)         |
| External validation cohort 1           | 1.40 (1.14, 1.71)         |
| External validation cohort 2           | <b>1</b> .13 (1.06, 1.19) |
| Overall (I-squared = 68.6%, p = 0.041) | 1.14 (1.03, 1.26)         |
| g_roseburia                            |                           |
| Discovery cohort                       | 0.78 (0.66, 0.93)         |
| External validation cohort 1           | 0.85 (0.61, 1.20)         |
| External validation cohort 2           | 0.85 (0.74, 0.98)         |
| Overall (I-squared = 0.0%, p = 0.756)  | 0.82 (0.74, 0.91)         |
|                                        |                           |
| .6 1                                   | 2                         |

23

### Fig.S8. Identified gut microbiota affects the type 2 diabetes development in germ-

free mice. (A) Schematic diagram. (B) Fasting glucose curves. (C) Quantification of fasting glucose by AUC. \* compared with CON group, # compared with Low MRS group, + compared with High MRS+non-type 2 diabetes group. (\*, #, +) P< 0.05, (\*\*, ##, ++) P< 0.01, (\*\*\*, ###, +++) P< 0.001 by ANOVA. The P-values were adjusted using the Benjamini and Hochberg method.





Easting glucose (AUC)

| iorest and logistic re | SICSSION III C | ne unscovery con       | iori and vanuali |      |
|------------------------|----------------|------------------------|------------------|------|
| Algorithm              |                | Validation<br>cohort 1 |                  |      |
| Algorithm              | AUC            | AUC                    | AUC              | AUC  |
|                        | (mean)         | (minimum)              | (maximum)        |      |
| LightGBM               | 0.93           | 0.9                    | 0.95             | 0.84 |
| Random forest          | 0.84           | 0.79                   | 0.88             | 0.53 |
| Logistic regression    | 0.92           | 0.87                   | 0.97             | 0.53 |

Table S1. Comparison of the prediction performance of LightGBM, random forest and logistic regression in the discovery cohort and validation cohort 1.

| Eastures               |        | Validation<br>cohort 1 |           |      |
|------------------------|--------|------------------------|-----------|------|
| Features               | AUC    | AUC                    | AUC       | AUC  |
|                        | (mean) | (minimum)              | (maximum) |      |
| 297 features           | 0.93   | 0.9                    | 0.95      | 0.84 |
| Identified 21 features | 0.92   | 0.9                    | 0.94      | 0.84 |

 Table S2. Comparison of the prediction performance of all inputted and selected features in different cohorts.

|                            | Median | No. of cases / | Adjusted risk ratio | <b>D</b> 1 |
|----------------------------|--------|----------------|---------------------|------------|
| Cohorts                    | (MRS)  | Total No.      | (95% CI)            | P value    |
| Discovery cohort           |        |                |                     |            |
| Quartile 1                 | 3      | 33 / 569       | 1 (reference)       |            |
| Quartile 2                 | 5      | 62 / 515       | 2.02 (1.35, 3.02)   | < 0.001    |
| Quartile 3                 | 7      | 70 / 419       | 2.73 (1.85, 4.04)   | < 0.001    |
| Quartile 4                 | 10     | 101 / 304      | 5.29 (3.66, 7.65)   | < 0.001    |
| External validation        |        |                |                     |            |
| cohort 1                   |        |                |                     |            |
| Quartile 1                 | 4      | 7 / 65         | 1 (reference)       |            |
| Quartile 2                 | 6      | 4 / 31         | 1.47 (0.49, 4.43)   | 0.49       |
| Quartile 3                 | 7      | 15 / 53        | 2.6 (1.17, 5.79)    | 0.019      |
| Quartile 4                 | 10     | 17 / 39        | 4.17 (1.96, 8.85)   | < 0.001    |
| <b>External validation</b> |        |                |                     |            |
| cohort 2                   |        |                |                     |            |
| Quartile 1                 | 6      | 236 / 3065     | 1 (reference)       |            |
| Quartile 2                 | 7      | 147 / 1672     | 1.11 (0.91, 1.35)   | 0.31       |
| Quartile 3                 | 8      | 110 / 1104     | 1.27 (1.03, 1.57)   | 0.025      |
| Quartile 4                 | 9      | 104 / 946      | 1.36 (1.10, 1.68)   | 0.0051     |

Table S3. Association of the gut microbiome risk score (MRS) with type 2 diabetes\*

\*Poisson regression was used to estimate the risk ratio (RR) and 95% confidence interval (CI) of type 2 diabetes in each of the three cohorts, according to the gut microbiome risk score. In these comparisons, participants at low microbiome risk (Quartile 1) were treated as the reference group. The covariates for the discovery cohort and validation cohort 1 were total energy intake, age, waist circumference, sex, BMI, alcohol status, smoking status, education, marital status and income. For the validation cohort 2 (GGMP), covariates including age, waist circumference, sex, BMI, alcohol status, smoking status, education, marital status.

|          | Mean<br>(Microbiome risk score) | No. of cases /<br>Total No. | Adjusted risk ratio<br>(95% CI) | P value |
|----------|---------------------------------|-----------------------------|---------------------------------|---------|
| Age      |                                 |                             |                                 |         |
| < median | 5.7                             | 94 / 910                    | 1.31 (1.21,1.41)                | < 0.001 |
| ≥median  | 6.1                             | 172 / 897                   | 1.27 (1.21, 1.33)               | < 0.001 |
| Sex      |                                 |                             |                                 |         |
| Men      | 6                               | 103 / 601                   | 1.24 (1.17, 1.32)               | < 0.001 |
| Women    | 5.9                             | 163 / 1206                  | 1.29 (1.23, 1.37)               | < 0.001 |

Table S4. Association of the gut microbiome risk score with type 2 diabetes stratified by age and sex in the discovery cohort \*

\* Poisson regression was used to performed subgroup analysis for MRS-type 2 diabetes relationship stratified by age (<64.3 years vs.  $\geq$ 64.3 years, with 64.3 years as the median age of this cohort) and sex in the discovery cohort. The covariates were total energy intake, age, waist circumference, sex, BMI, alcohol status, smoking status, education, marital status and income. The median age of the discovery cohort is 64.3 years.

|                       | Optimal<br>threshold<br>(relative |                                         |
|-----------------------|-----------------------------------|-----------------------------------------|
| Microbiome            | abundance)                        | Taxa annotation                         |
| f_lactobacillaceae    | ,                                 | pFirmicutes; cBacilli;                  |
|                       | 0.0000877                         | o_Lactobacillales; f_lactobacillaceae   |
| c_alphaproteobacteria | 0.00101                           | p_Proteobacteria; c_alphaproteobacteria |
| fmogibacteriaceae     |                                   | pFirmicutes; cClostridia;               |
| _ 0                   | 0.0000403                         | oClostridiales; fmogibacteriaceae       |
| gclostridiaceae spp   |                                   | pFirmicutes; cClostridia;               |
|                       | 0.00313                           | oClostridiales; fClostridiaceae; g      |
| cdeltaproteobacteria  | 0.0109                            | pProteobacteria; cdeltaproteobacteria   |
| gbutyrivibrio         |                                   | pFirmicutes; cClostridia;               |
| <i>c i</i>            |                                   | oClostridiales; fLachnospiraceae;       |
|                       | 0.0000448                         | gbutyrivibrio                           |
| o_lactobacillales     |                                   | pFirmicutes; cBacilli;                  |
|                       | 0.0193                            | olactobacillales                        |
| fcomamonadaceae       |                                   | p_Proteobacteria; c_Betaproteobacteria; |
|                       | 0.0000645                         | o_Burkholderiales; fcomamonadaceae      |
| groseburia            |                                   | <pre>pFirmicutes; cClostridia;</pre>    |
|                       |                                   | oClostridiales; fLachnospiraceae;       |
|                       | 0.011                             | groseburia                              |
| gmegamonas            |                                   | <pre>pFirmicutes; cClostridia;</pre>    |
|                       |                                   | oClostridiales; fVeillonellaceae;       |
|                       | 0.00054                           | gmegamonas                              |
| gmogibacteriaceae     |                                   | <pre>pFirmicutes; cClostridia;</pre>    |
| spp                   | 0.0000855                         | o_Clostridiales; f_mogibacteriaceae; g_ |
| gdorea                |                                   | <pre>pFirmicutes; cClostridia;</pre>    |
|                       |                                   | o_Clostridiales; f_Lachnospiraceae;     |
|                       | 0.00861                           | gdorea                                  |
| sdispar               |                                   | <pre>pFirmicutes; cClostridia;</pre>    |
|                       |                                   | o_Clostridiales; f_Veillonellaceae;     |
|                       | 0.000757                          | gVeillonella; sdispar                   |

# Table S5. The optimal threshold of the selected microbiome features according to their SHAP dependence plot

|                               | n    | beta    | 95% CI        | р       |
|-------------------------------|------|---------|---------------|---------|
| Age                           | 1812 | 0.023   | 0.0026, 0.043 | 0.027   |
| Energy intake                 | 1812 | 0.059   | -0.065, 0.18  | 0.35    |
| MET                           | 1812 | -0.02   | -0.12, 0.08   | 0.69    |
| BMI                           | 1812 | 0.1     | 0.023, 0.18   | 0.012   |
| Educatioin                    | 1812 | 0.2     | 0.042, 0.36   | 0.013   |
| Hip circumference             | 1812 | -0.039  | -0.07, -0.007 | 0.017   |
| Waist circumference           | 1812 | -0.0041 | -0.028, 0.02  | 0.74    |
| Neck circumference            | 1812 | -0.037  | -0.099, 0.026 | 0.25    |
| Income                        | 1812 | -0.12   | -0.31, 0.06   | 0.19    |
| Red and processed meat intake | 1812 | -0.051  | -0.16, 0.59   | 0.37    |
| Fruit intake                  | 1812 | -0.025  | -0.14, 0.085  | 0.66    |
| Fish intake                   | 1812 | 0.061   | -0.046, 0.17  | 0.26    |
| Vegetable intake              | 1812 | -0.08   | -0.19, 0.03   | 0.15    |
| Yogurt intake                 | 1812 | -0.027  | -0.13, 0.076  | 0.6     |
| Sex                           | 1812 | 0.035   | -0.38 0.45    | 0.87    |
| Current alcohol drinking      | 1812 | -0.33   | -0.78, 0.12   | 0.15    |
| Current tea drinking          | 1812 | -0.25   | -0.49, -0.018 | 0.035   |
| Current smoke drinking        | 1812 | 0.09    | -0.3, 0.48    | 0.65    |
| Marital status                | 1812 | 0.144   | -0.25, 0.54   | 0.47    |
| Drug use                      | 1812 | 2.56    | 2.18, 2.95    | < 0.001 |

Table S6. Associations of baseline adiposity and dietary factors with microbiome risk score\*

\*beta: correlation coefficient of baseline diet and basic attributes with microbiome features; CI: confidence interval.

| Outcome              | n    | beta    | 95% CI          | р        |
|----------------------|------|---------|-----------------|----------|
| TOTAL_FAT            | 1750 | -5.344  | -27.28-16.59    | 0.63     |
| TOTAL_MASS           | 1750 | -10.166 | -55.01-34.68    | 0.66     |
| TOTAL_PFAT           | 1750 | -0.032  | -0.11-0.05      | 0.44     |
| ANDROID_FAT          | 1750 | 2.577   | -7.22-12.38     | 0.61     |
| ANDROID_MASS         | 1750 | 5.064   | -13.42-23.55    | 0.59     |
| ANDROID_PFAT         | 1750 | 0.005   | -0.1-0.11       | 0.93     |
| GYNOID_FAT           | 1750 | -7.921  | -21.4-5.56      | 0.25     |
| GYNOID_MASS          | 1750 | -15.231 | -42.97-12.51    | 0.28     |
| GYNOID_PFAT          | 1750 | -0.050  | -0.13-0.03      | 0.22     |
| TOTAL_PERCENT_FAT    | 1750 | -0.004  | -0.08-0.08      | 0.92     |
| BODY_MASS_INDEX      | 1750 | 0.149   | -0.45-0.74      | 0.62     |
| ANDROID_GYNOID_RATIO | 1750 | 0.002   | -0.00084-0.0047 | 0.17     |
| ANDROID_PERCENT_FAT  | 1750 | 0.005   | -0.1-0.11       | 0.93     |
| GYNOID_PERCENT_FAT   | 1750 | -0.050  | -0.13-0.03      | 0.22     |
| FAT_MASS_RATIO       | 1750 | 0.005   | 0.0016-0.0074   | 0.00225  |
| TRUNK_LIMB_FAT_MASS_ |      |         |                 |          |
| RATIO                | 1750 | 0.007   | 0.0037-0.011    | 0.000117 |
| FAT_MASS_HEIGHT_SQUA |      |         |                 |          |
| RED                  | 1750 | 0.033   | -0.05-0.11      | 0.422    |
| TOTAL_FAT_MASS       | 1750 | 2.746   | -84.04-89.53    | 0.951    |
| GLOBAL_FAT           | 1750 | -3.066  | -90.56-84.43    | 0.945    |
| GLOBAL_MASS          | 1750 | -34.092 | -202.98-134.8   | 0.692    |
| GLOBAL_PFAT          | 1750 | -0.016  | -0.1-0.07       | 0.705    |
| HEAD_FAT             | 1750 | -0.368  | -2.12-1.38      | 0.681    |
| HEAD_MASS            | 1750 | -2.770  | -10.15-4.62     | 0.462    |
| HEAD_PFAT            | 1750 | 0.006   | -0.0026-0.0014  | 0.183    |
| LARM_FAT             | 1750 | 1.654   | -4.96-8.27      | 0.624    |
| LARM_MASS            | 1750 | -2.245  | -12.41-7.92     | 0.665    |
| LARM_PFAT            | 1750 | 0.032   | -0.09-0.16      | 0.606    |
| RARM_FAT             | 1750 | 2.092   | -4.3-8.48       | 0.521    |
| RARM_MASS            | 1750 | -1.769  | -12.08-8.55     | 0.737    |
| RARM_PFAT            | 1750 | 0.042   | -0.08-0.16      | 0.490    |
| TRUNK_FAT            | 1750 | 26.380  | -24.08-76.84    | 0.306    |
| TRUNK_MASS           | 1750 | 37.376  | -55.31-130.06   | 0.429    |
| TRUNK_PFAT           | 1750 | 0.030   | -0.06-0.12      | 0.536    |
| L_LEG_FAT            | 1750 | -14.150 | -29.21-0.91     | 0.066    |
| L_LEG_MASS           | 1750 | -28.815 | -56.720.91      | 0.043    |
| L_LEG_PFAT           | 1750 | -0.079  | -0.18-0.02      | 0.105    |
| R_LEG_FAT            | 1750 | -14.513 | -30-0.97        | 0.066    |
| R_LEG_MASS           | 1750 | -26.408 | -54.8-1.98      | 0.068    |
| R_LEG_PFAT           | 1750 | -0.093  | -0.19-0.01      | 0.063    |
| SUBTOT_FAT           | 1750 | 1.463   | -85.46-88.39    | 0.974    |
| SUBTOT_MASS          | 1750 | -21.861 | -182.34-138.62  | 0.789    |
| SUBTOT_PFAT          | 1750 | -0.007  | -0.09-0.08      | 0.868    |
| WBTOT_FAT            | 1750 | 1.095   | -86.71-88.9     | 0.980    |
| WBTOT_MASS           | 1750 | -24.630 | -189.48-140.21  | 0.770    |
|                      |      |         |                 |          |

Table S7. Associations of the microbiome risk score with body fat distribution in the discovery cohort\*

| WBTOT_PFAT 1750 | 0 -0.006 -0.09-0.08 0.888 |  |
|-----------------|---------------------------|--|
|-----------------|---------------------------|--|

\*Linear regression was performed to examine the association of microbiome risk score with components of body fat distribution, adjusted for total energy intake, age, sex, alcohol status, smoking status, education, marital status and income

Microbiome risk score: components including index of  $\alpha$ -diversity (observe species), and 13 taxarelated features (*f\_lactobacillaceae*, *c\_alphaproteobacteria*, *f\_mogibacteriaceae*, *g\_clostridiaceae spp*, *c\_deltaproteobacteria*, *g\_butyrivibrio*, *o\_lactobacillales*, *f\_comamonadaceae*, *g\_roseburia*, *g\_megamonas*, *g\_mogibacteriaceae spp*, *g\_dorea*, *s\_dispar*).

| Outcome                   | n   | Beta    | 95% CI          | р     |
|---------------------------|-----|---------|-----------------|-------|
| TOTAL_FAT                 | 185 | -5.120  | -75.29-55.53    | 0.884 |
| TOTAL_MASS                | 185 | 19.324  | -123.67-136.55  | 0.782 |
| TOTAL_PFAT                | 185 | -0.102  | -0.35-0.15      | 0.449 |
| ANDROID_FAT               | 185 | 15.973  | -12.86-41.36    | 0.273 |
| ANDROID_MASS              | 185 | 37.384  | -18.1-83.13     | 0.169 |
| ANDROID_PFAT              | 185 | 0.074   | -0.24-0.42      | 0.678 |
| GYNOID_FAT                | 185 | -21.093 | -65.86-17.6     | 0.348 |
| GYNOID_MASS               | 185 | -18.060 | -109.09-56.94   | 0.686 |
| GYNOID_PFAT               | 185 | -0.191  | -0.44-0.06      | 0.157 |
| TOTAL_PERCENT_FAT         | 185 | 0.009   | -0.23-0.26      | 0.943 |
| BODY_MASS_INDEX           | 185 | 0.122   | -0.08-0.3       | 0.231 |
| ANDROID_GYNOID_RATIO      | 185 | 0.009   | -0.00033-0.0178 | 0.059 |
| ANDROID_PERCENT_FAT       | 185 | 0.074   | -0.24-0.42      | 0.678 |
| GYNOID_PERCENT_FAT        | 185 | -0.191  | -0.44-0.06      | 0.157 |
| FAT_MASS_RATIO            | 185 | 0.007   | 0.0067-0.016    | 0.159 |
| TRUNK_LIMB_FAT_MASS_RATIO | 185 | 0.015   | 0.0023-0.03     | 0.020 |
| FAT_MASS_HEIGHT_SQUARED   | 185 | 0.045   | -0.06-0.15      | 0.438 |
| TOTAL_FAT_MASS            | 185 | 102.950 | -177.6-360.91   | 0.477 |
| GLOBAL_FAT                | 185 | 102.918 | -177.61-360.84  | 0.477 |
| GLOBAL_MASS               | 185 | 213.248 | -313.55-684.25  | 0.427 |
| GLOBAL_PFAT               | 185 | 0.009   | -0.23-0.26      | 0.944 |
| HEAD_FAT                  | 185 | 2.185   | -3.92-6.54      | 0.437 |
| HEAD_MASS                 | 185 | 4.644   | -20.15-23.75    | 0.694 |
| HEAD_PFAT                 | 185 | 0.021   | -0.01-0.04      | 0.108 |
| LARM_FAT                  | 185 | 4.281   | -15.06-23.13    | 0.677 |
| LARM_MASS                 | 185 | 9.323   | -20.45-36.65    | 0.544 |
| LARM_PFAT                 | 185 | -0.038  | -0.39-0.34      | 0.844 |
| RARM_FAT                  | 185 | 6.775   | -13.95-25.61    | 0.524 |
| RARM_MASS                 | 185 | 14.976  | -19.18-43.11    | 0.371 |
| RARM_PFAT                 | 185 | -0.028  | -0.37-0.35      | 0.885 |
| TRUNK_FAT                 | 185 | 103.849 | -39.88-242.11   | 0.171 |
| TRUNK_MASS                | 185 | 202.665 | -76.77-457.47   | 0.158 |
| TRUNK_PFAT                | 185 | 0.090   | -0.16-0.37      | 0.529 |
| L_LEG_FAT                 | 185 | -4.545  | -61.75-44.84    | 0.874 |
| L_LEG_MASS                | 185 | -10.916 | -107.84-78.19   | 0.827 |
| L_LEG_PFAT                | 185 | -0.075  | -0.42-0.23      | 0.669 |
| R LEG FAT                 | 185 | -9.819  | -65.59-40.44    | 0.731 |
| R_LEG_MASS                | 185 | -8.410  | -102.94-75.64   | 0.861 |
| <br>R_LEG_PFAT            | 185 | -0.141  | -0.47-0.18      | 0.419 |
| SUBTOT_FAT                | 185 | 100.541 | -176.34-356.24  | 0.483 |
| SUBTOT_MASS               | 185 | 207.638 | -303.48-667.37  | 0.426 |
| SUBTOT_PFAT               | 185 | 0.007   | -0.25-0.28      | 0.963 |
| WBTOT_FAT                 | 185 | 102.726 | -178.09-360.61  | 0.478 |
| WBTOT_MASS                | 185 | 212.282 | -315.69-683.18  | 0.429 |
| WBTOT_PFAT                | 185 | 0.010   | -0.23-0.26      | 0.942 |

Table S8. Associations of the microbiome risk score with body fat distribution in the external validation cohort 1\*

\*Linear regression was performed to examine the association of microbiome risk score with components of body fat distribution, adjusted for total energy intake, age, sex, alcohol status, smoking status, education, marital status and income

Microbiome risk score: components including index of  $\alpha$ -diversity (observe species), and 13 taxarelated features (*f\_lactobacillaceae*, *c\_alphaproteobacteria*, *f\_mogibacteriaceae*, *g\_clostridiaceae spp*, *c\_deltaproteobacteria*, *g\_butyrivibrio*, *o\_lactobacillales*, *f\_comamonadaceae*, *g\_roseburia*, *g\_megamonas*, *g\_mogibacteriaceae spp*, *g\_dorea*, *s\_dispar*).