Supplementary materials

Table S1. Baseline characteristics of men and women by diabetes status at follow-up Table S2. Baseline characteristics of participants and non-participants Table S3. Characteristics of different submodels and final growth model for body mass index (BMI) in men Table S4. Characteristics of different submodels and final growth model for body mass index (BMI) in women Table S5. Characteristics of different submodels and final growth model for fasting plasma glucose (FPG) in men Table S6. Characteristics of different submodels and final growth model for fasting plasma glucose (FPG) in women Table S7. Characteristics of different submodels and final growth model for systolic blood pressure (SBP) in men Table S8. Characteristics of different submodels and final growth model for systolic blood pressure (SBP) in women Table S9. Characteristics of different submodels and final growth model for diastolic blood pressure (DBP) in men Table S10. Characteristics of different submodels and final growth model for diastolic blood pressure (DBP) in women Table S11. Characteristics of different submodels and final growth model for high density lipoprotein cholesterol (HDL-C) in men Table S12. Characteristics of different submodels and final growth model for high density lipoprotein cholesterol (HDL-C) in women Table S13. Characteristics of different submodels and final growth model for total cholesterol (TC) in men Table S14. Characteristics of different submodels and final growth model for total cholesterol (TC) in women Table S15. Characteristics of different submodels and final growth model for natural logarithm of triglyceride (Ln-TG) in men Table S16. Characteristics of different submodels and final growth model for natural logarithm of triglyceride (Ln-TG) in women Table S17. Characteristics of different submodels and final growth model for 2-h post-load plasma (2-hPG) in men Table S18. Characteristics of different submodels and final growth model for 2-h post-load plasma (2-hPG) in women Supplementary Figure 1: Study sample selection flow chart Supplementary Figure 2: Mean predicted value for metabolic risk factors from mixed effects models by gender.

	Ν	ſen		Wo		
-	Diabetes n=316	Without diabetes n=2753	*P value	Diabetes n=427	Without diabetes n=3667	*P value
Age (years)	45.4 (12.1)	39.7 (13.2)	< 0.001	43.8 (11.8)	37.7 (12.3)	< 0.001
BMI (kg/m ²)	27.4 (3.7)	25.3 (3.9)	< 0.001	29.8 (5.0)	26.6 (4.6)	< 0.001
FPG (mmol/L)	5.2 (0.5)	4.9 (0.4)	< 0.001	5.2 (0.5)	4.8 (0.4)	< 0.001
SBP (mmHg)	123.3 (17.6)	116.5 (15.0)	< 0.001	121.1 (17.6)	113.3 (16.3)	< 0.001
DBP (mmHg)	81.3 (10.4)	76.0 (10.1)	< 0.001	79.6 (10.1)	75.1 (10.2)	< 0.001
HDL-C (mmol/L)	0.96 (0.21)	0.98 (0.24)	0.067	1.10 (0.28)	1.18 (0.29)	< 0.001
TC (mmol/L)	5.61 (1.02)	5.08 (1.08)	< 0.001	5.74 (1.23)	5.19 (1.17)	< 0.001
Ln-TG (mmol/L)	0.74 (0.49)	0.48 (0.54)	< 0.001	0.64 (0.51)	0.29 (0.52)	< 0.001
2-hPG (mmol/L)	6.5 (1.7)	5.4 (1.4)	< 0.001	6.9 (1.5)	5.7 (1.3)	< 0.001
Smokers	83 (26.3)	835 (30.5)	0.136	12 (2.8)	140 (3.8)	0.345
Family history of diabetes (yes)	116 (36.7)	620 (22.5)	< 0.001	147 (34.4)	903 (24.6)	< 0.001
Physical activity (low)	245 (79.3)	1861 (70.6)	0.001	303 (73.2)	2415 (69.6)	0.140

Table S1. Baseline characteristics of men and women by diabetes status at follow-up

Values are mean (SD) for continuous variables and frequency (percentage) for categorical variables.

P values show statistical differences based on t-test and chi-square test for continuous and categorical variables, respectively.

BMI: body mass index; FPG: fasting plasma glucose; TC: total cholesterol; SBP: systolic blood pressure, DBP: diastolic blood pressure;

HDL-C: high-density lipoprotein cholesterol; 2-hPG: 2-h post-load plasma; Ln-TG: natural logarithm of triglyceride; SD: standard deviation

	Non-Participants n=3905	Participants n=7163	*P value
Male (%)	1731 (44.3)	3069 (42.8)	0.069
Age (years)	39.6 (14.0)	39.2 (12.8)	0.180
BMI (kg/m ²)	26.8 (5.1)	26.3 (4.5)	< 0.001
FPG (mmol/L)	5.1 (0.6)	4.9 (0.5)	< 0.001
SBP (mmHg)	117.9 (18.5)	115.4 (16.2)	< 0.001
DBP (mmHg)	77.4 (11.1)	76.0 (10.3)	< 0.001
HDL (mmol/L)	1.07 (0.3)	1.09 (0.3)	0.017
TC (mmol/L)	5.2 (1.2)	5.2 (1.1)	0.364
Ln-TG (mmol/L)	0.45 (0.57)	0.40 (0.57)	< 0.001
2-hPG (mmol/L)	6.1 (1.7)	5.7 (1.4)	< 0.001
Smokers	769 (20.9)	1070 (15.0)	< 0.001
Family history of diabetes (yes)	1010 (25.9)	1786 (24.9)	0.146
Physical activity (low)	2481 (70.6)	4824 (70.6)	0.481

Table S2. Baseline characteristics of participants and non-participants

Values are mean (SD) for continuous variables and frequency (percentage) for categorical variables. P values show statistical differences based on t-test and chi-square test for continuous and categorical variables, respectively.

BMI: body mass index; **FPG:** fasting plasma glucose; **TC:** total cholesterol; **SBP:** systolic blood pressure, **DBP:** diastolic blood pressure; **HDL-C:** high-density lipoprotein cholesterol; **2-hPG:** 2-h post-load plasma; **Ln-TG:** natural logarithm of triglyceride; **SD:** standard deviation

	Value (Standard error), P value							
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Final model
Intercept	βo	26.73(0.07), <0.001	26.70 (0.07), <0.001	27.37(0.07), <0.001	27.41 (0.07), <0.001	27.44 (0.08), <0.001	27.41 (0.07), <0.001	27.42 (0.08), <0.001
Age	β1		0.11(0.002), <0.001	0.11(0.002), <0.001	0.08 (0.002), <0.001	0.08 (0.003), <0.001	0.075 (0.003), <0.001	0.077 (0.003), <0.001
Age ²	β2			-0.03(0.001), <0.001	-0.03(0.001), <0.001	-0.03 (0.001), <0.001	-0.04 (0.001), <0.001	-0.04 (0.001), <0.001
Age ³	β3				0.001(0.0001), <0.001	0.001(0.0001), <0.001	0.001 (0.0001), <0.001	0.001 (0.0001)
Variance of random intercept	$\sigma^2 u_0$	14.44 (0.38)	17.44 (0.47)	16.71 (0.44)	16.44 (0.43)	16.57 (0.11)	17.01 (0.48)	17.01 (0.48)
Variance of random Age term	$\sigma^2 u_1$					0.01 (0.06)	0.012 (0.0008)	0.012 (0.0009)
Variance of random Age ² term	$\sigma^2 u_2$						0.0006 (0.0001)	0.0006 (0.0001)
AIC		65360.16	63219.39	61684.86	61522.01	60651.5	60400.9	60272.06
Log Likelihood (P value for LR test)		-32677.08	-31605.7 (<0.001)	-30837.43 (<0.001)	-30755 (<0.001)	-30317.8 (<0.001)	-30189.4 (<0.001)	-30123.0 (<0.001)

Table S3. Characteristics of different submodels and final growth model for body mass index (BMI) in men

Model 1: Unconditional mean Model 2: Unconditional growth model Model 3: Quadratic unconditional growth model Model 4: Cubic unconditional growth model Level 1: $BMI_{ii} = b_{oi} + e_{ii}$ Level 1: BMI_{ii}= $b_{0i} + b_1Age_{ii} + e_{1i}$ Level 1: BMI_{ii} = $b_{0i} + b_1 Age_{ii} + b_2 Age^{2}_{ii} + e_{ii}$ Level 1: BMI_{ii}= b_{0i} + b_1Age_{ii} + $b_2Age^{2}_{ii}$ + $b_3Age^{3}_{ii}$ + e_{ii} Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$ Model 5: Cubic growth model with the intercept and slope variability Model 6: Cubic growth model with the intercept and slopes variability Final Model: Was obtained with Level 1: BMI_{ii}= b_{0i} + b_1Age_{ii} + $b_2Age^{2}_{ii}$ + $b_3Age^{3}_{ii}$ + e_{ii} Level 1: BMI_{ij} = $b_{0i} + b_1 Age_{ii} + b_2 Age^2_{ii} + b_3 Age^3_{ii} + e_{ij}$ adding following error structure

Level 2: $b_{0i} = \beta_0 + u_{0i}$ into Model 6:Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ RCS: First-OrderLevel 2: $b_{2i} = \beta_2$ Level 2: $b_{2i} = \beta_2 + u_{2i}$ AutoregressiveLevel 2: $b_{3i} = \beta_3$ Level 2: $b_{3i} = \beta_3$ RH: $\sigma^2 \times |Age|^{2\delta}$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 6 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

	Value (Standard Error), P value								
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Final model	
Intercept	βο	28.55(0.07), <0.001	28.83 (0.07), <0.001	29.29 (0.07), <0.001	29.29 (0.07), <0.001	29.30 (0.07), <0.001	29.30 (0.07), <0.001	29.30 (0.07), <0.001	
Age	β1		0.17 (0.002), <0.001	0.17 (0.002), <0.001	0.16 (0.003), <0.001	0.15 (0.003), <0.001	0.15 (0.003), <0.001	0.16(0.003), <0.001	
Age ²	β2			-0.03 (0.0009), <0.001	-0.03 (0.0009), <0.001	-0.02 (0.001), <0.001	-0.03 (0.001), <0.001	-0.03 (0.001), <0.001	
Age ³	β3				0.0002(0.0001), <0.001	0.0007 (0.0001), <0.001	0.0004 (0.0001), <0.01	0.0003 (0.0001), <0.01	
Variance of random intercept	$\sigma^2 u_0$	20.94 (0.48)	20.25 (0.46)	19.41 (0.44)	19.40 (0.44)	21.29 (0.11)	21.68 (0.52)	21.27 (0.52)	
Variance of random Age term	$\sigma^2 u_1$					0.02 (0.08)	0.02 (0.0009)	0.01(0.001)	
Variance of random Age ² term	$\sigma^2 u_2$						0.0009 (0.0001)	0.0008 (0.0001)	
AIC		95547.99	89746.35	88894.02	88888.71	87158.5	86827.63	86691.11	
Log Likelihood (P value for LR test)		-47771.00	-44869.17 (<0.001)	-44442.01 (<0.001)	-44438.36 (0.006)	-43571.30 (<0.001)	-43402.82 (<0.001)	-43332.56 (<0.001)	
Model 1: Unconditional mean Level 1: $BMI_{ij} = b_{oi} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$	model		e _{ij} Level Level		onditional growth m Age _{ij} + b ₂ Age ² _{ij} +e _{ij}				
$\begin{array}{l} \textbf{Model 5: Cubic growth model wi} \\ \textbf{Level 1: BMI}_{ij} = b_{oi} + b_1 Age_{ij} + b_2 \\ \textbf{Level 2: } b_{oi} = \beta_0 + u_{0i} \\ \textbf{Level 2: } b_{1i} = \beta_1 + u_{1i} \\ \textbf{Level 2: } b_{2i} = \beta_2 \end{array}$			Level 1: Level 2: Level 2:		del with the intercep $b_{ij} + b_2 Age^2_{ij} + b_3 Ag^2$	ot and slopes variabi e ³ _{ij} + e _{ij}	with addi		

Table S4. Characteristics of different submodels and fina	l growth model for body mass index (BMI) in women
---	---

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

Level 2: $b_{3i} = \beta_3$

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Level 2: $b_{3i} = \beta_3$

RH: $\sigma^2 \times e^{2\delta \times Age}$

Models 1 to 6 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

	Value (Standard Error), P value								
	Notation	Model 1	Model 2	Model 3	Model 4	Final model			
Intercept	βo	5.14 (0.01), <0.001	5.13 (0.01), <0.001	5.18 (0.01), <0.001	5.18 (0.01), <0.001	5.18 (0.01), <0.001			
Age	β1		0.01 (0.0004), <0.001	0.01 (0.0004), <0.001	0.01 (0.0004), <0.001	0.01 (0.0004), <0.001			
Age ²	β2			-0.002 (0.0002), <0.001	-0.002 (0.0002), <0.001	-0.002 (0.0002), <0.001			
Variance of random intercept	σ ² u ₀	0.10 (0.004)	0.11 (0.004)	0.11 (0.004)	0.11 (0.004)	0.11 (0.004)			
Variance of random Age term	$\sigma^2 u_1$				0.00003 (0.00001)	0.00003 (0.00001			
AIC		18565.28	17405.42	17263.34	17170.78	17157.73			
Log Likelihood (P value for LR test)		-9279.641	-8698.711 (<0.001)	-8626.670 (<0.001)	-8578.39 (<0.001)	-8570.864 (<0.001)			

Table S5. Characteristics of different submodels and final growth model for fasting plasma glucose (FPG) in men

Model 1: Unconditional mean Level 1: $FPG_{ij}=b_{oi}+e_{ij}$ Level 2: $b_{oi}=\beta_0+u_{0i}$ **Model 2:** Unconditional growth model Level 1: $FPG_{ij}=b_{oi} + b_1Age_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ **Model 3:** Quadratic unconditional growth model Level 1: $FPG_{ij}=b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$

Final Model: Was obtained with adding following error structure into Model 4:

RCS: Was not adjusted for residual correlation structure

Model 4: Quadratic growth model with the intercept and slope variability Level 1: FPG_{ij}= $b_{0i} + b_1Age_{ij} + b_2Age^2_{ij} + e_{ij}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$

Level 2: $b_{2i} = \beta_2$

 $12.021 - p_2$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

RH: $\sigma^2 \times e^{2\delta \times Age}$

Models 1 to 4 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

	Value (Standard Error), P value							
	Notation	Model 1	Model 2	Model 3	Model 4	Final model		
Intercept	βo	5.02 (0.01), <0.001	5.05 (0.006), <0.001	5.08 (0.01), <0.001	5.08 (0.01), <0.001	5.08 (0.01), <0.001		
Age	β1		0.02 (0.0003), <0.001	0.02 (0.0003), <0.001	0.02 (0.0004), <0.001	0.02 (0.0004), <0.001		
Age ²	β2			-0.002 (0.0002), <0.001	-0.001 (0.0002), <0.001	-0.001 (0.0002), <0.001		
Variance of random intercept	$\sigma^2 u_0$	0.12 (0.003)	0.11 (0.003)	0.11 (0.003)	0.11 (0.003)	0.11 (0.003)		
Variance of random Age term	$\sigma^2 u_1$				0.00006 (0.00001)	0.00006 (0.00001)		
AIC		25245.79	22857.62	22737.6	22480.27	22408.66		
Log Likelihood (P value for LR test)		-12619.9	-11424.81 (<0.001)	-11363.8 (<0.001)	-11233.13 (<0.001)	-11196.33 (<0.001)		

Table S6. Characteristics of different submodels and final growth model for fasting plasma glucose (FPG) in women

Model 1: Unconditional mean Level 1: $FPG_{ij} = b_{oi} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ **Model 2:** Unconditional growth model Level 1: $FPG_{ij}=b_{oi}+b_1Age_{ij}+e_{ij}$ Level 2: $b_{oi}=\beta_0+u_{0i}$ Level 2: $b_{1i}=\beta_1$ $\begin{array}{l} \textbf{Model 3: } \textit{Quadratic unconditional growth model} \\ \textit{Level 1: } \textit{FPG}_{ij} = b_{oi} + b_1 Age_{ij} + b_2 Age^{2}{}_{ij} + e_{ij} \\ \textit{Level 2: } b_{oi} = \beta_0 + u_{0i} \\ \textit{Level 2: } b_{1i} = \beta_1 \\ \textit{Level 2: } b_{2i} = \beta_2 \end{array}$

Model 4: Quadratic growth model with the intercept and slope variability
Level 1: FPG _{ij} = b_{oi} + b_1Age_{ij} + $b_2Age^2_{ij}$ + e_{ij}
Level 2: $b_{oi} = \beta_0 + u_{0i}$
Level 2: $b_{1i} = \beta_1 + u_{1i}$
Level 2: $b_{2i} = \beta_2$

Final Model: Was obtained with adding following error structure into Model 4: **RCS:** Was not adjusted for residual correlation structure **RH:** $\sigma^2 \times e^{2\delta \times Age}$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 4 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

	Value (Standard Error), P value								
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Final model		
Intercept	βο	118.69 (0.25), <0.001	118.55 (0.22), <0.001	117.60 (0.25), <0.001	117.33 (0.25), <0.001	117.32 (0.24), <0.001	117.26 (0.24), <0.001		
Age	β1		0.37 (0.01), <0.001	0.36 (0.01), <0.001	0.51 (0.01), <0.001	0.53 (0.01), <0.001	0.51 (0.02), <0.001		
Age ²	β2			0.04 (0.005), <0.001	0.08 (0.005), <0.001	0.07 (0.006), <0.001	0.08 (0.006), <0.001		
Age ³	β3				-0.006 (0.0005), <0.001	-0.007 (0.0005), <0.001	-0.006 (0.0006), <0.001		
Variance of random intercept	$\sigma^2 u_0$	171.65 (4.99)	137.06 (4.11)	134.71(4.04)	134.30 (4.02)	119.56 (3.91)	111.82 (3.99)		
Variance of random Age term	$\sigma^2 u_1$					0.10 (0.01)	0.09 (0.01)		
AIC		114402	113437.6	113362.5	113225.7	112871.2	111807.3		
Log Likelihood (P value for LR test)	-57197.98	-56714.80 (<0.001)	-56676.24 (<0.001)	-56606.84 (<0.001)	-56427.58 (<0.001)	-55893.63 (<0.001)		

Table S7. Characteristics of different submodels and final growth model for systolic blood pressure (SBP) in men

	Model 2: Unconditional growth model Level 1: SBP _{ij} = $b_{oi} + b_1Age_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$		
Model 5: Cubic growth model w Level 1: SBP _{ij} = $b_{oi} + b_1Age_{ij} + b_2$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$	with the intercept and slope variability ${}_{2}Age^{2}_{ij} + b_{3}Age^{3}_{ij} + e_{ij}$	Final Model: Was obtained with adding follo RCS: First-Order Autoregressive RH: $\sigma^2 \times e^{2\delta \times Age}$	wing error structure into Model 5:

Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; $\mathbf{b}_{\mathbf{k}}$ represent individual component or random effects; $\mathbf{u}_{\mathbf{k}i}$ represents the deviation of $\mathbf{b}_{\mathbf{k}i}$ from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

	Value (Standard Error), P value								
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Final model		
Intercept	βo	114.10 (0.23), <0.001	114.75 (0.19), <0.001	113.6 (0.21), <0.001	113.56 (0.21), <0.001	113.57 (0.21), <0.001	113.29 (0.21), <0.001		
Age	β1		0.44 (0.01), <0.001	0.45 (0.01), <0.001	0.64 (0.02), <0.001	0.65 (0.02), <0.001	0.65 (0.01), <0.001		
Age ²	β2			0.06 (0.005), <0.001	0.08 (0.005), <0.001	0.05 (0.005), <0.001	0.07 (0.006), <0.001		
Age ³	β3				-0.008 (0.0005), <0.001	-0.008 (0.0005), <0.001	-0.008 (0.0006) <0.001		
Variance of random intercept	$\sigma^2 u_0$	203.22 (5.07)	132.75 (3.68)	129.73 (3.59)	127.56 (3.51)	124.52 (3.70)	116.12 (3.75)		
Variance of random Age term	$\sigma^2 u_1$					0.07 (0.01)	0.09 (0.01)		
AIC		161219.3	159815.5	159670.3	159468.4	158874.2	157076.2		
Log Likelihood (P value for LR test)		-80606.63	-79903.75 (<0.001)	-79830.14 (<0.001)	-79728.22 (<0.001)	-79429.09 (<0.001)	-78528.1 (<0.001)		

Model 1: Unconditional mean Level 1: SBP_{ii}= $b_{oi} + e_{ii}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$

Model 2: Unconditional growth model Level 1: SBP_{ij}= $b_{oi} + b_1Age_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$

Model 5: Cubic growth model with the intercept and slope variability

Level 1: SBP_{ij}= b_{0i} + b_1Age_{ij} + $b_2Age^{2}_{ij}$ + $b_3Age^{3}_{ij}$ + e_{ij}

Model 3: Quadratic unconditional growth model Level 1: SBP_{ii}= $b_{0i} + b_1Age_{ii} + b_2Age_{ii}^2 + e_{ii}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$

Model 4: Cubic unconditional growth model Level 1: SBP_{ii}= $b_{0i} + b_1 Age_{ii} + b_2 Age_{ii}^2 + b_2 Age_{ii}^$ $b_3Age_{ii}^3 + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$

Final Model: Was obtained with adding following error structure into Model 5: **RCS:** First-Order Autoregressive **RH:** $\sigma^2 \times e^{2\delta \times Age}$

Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{2i} = \beta_2$

Level 2: $b_{3i} = \beta_3$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

	Value (Standard Error), P value								
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Final model		
Intercept	βo	77.81 (0.14), <0.001	77.75 (0.15), <0.001	79.47 (0.16), <0.001	79.42 (0.16), <0.001	79.44 (0.16), <0.001	79.45 (0.16), <0.001		
Age	β1		0.16 (0.01), <0.001	0.19 (0.01), <0.001	0.21 (0.01), <0.001	0.22 (0.01), <0.001	0.22 (0.01), <0.001		
Age ²	β2			-0.08 (0.003), <0.001	-0.08 (0.004), <0.001	-0.08 (0.004), <0.001	-0.08 (0.004), <0.001		
Age ³	β3				-0.001 (0.0003), 0.003	-0.001 (0.0004), 0.004	-0.001 (0.0004), <0.001		
Variance of random intercept	$\sigma^2 u_0$	54.38 (1.71)	56.99 (1.79)	55.05 (1.72)	55.25 (1.73)	52.28 (1.76)	52.25 (1.77)		
Variance of random Age term	$\sigma^2 u_1$					0.02 (0.005)	0.02 (0.005)		
AIC		103769.1	103387.8	102867.2	102860.4	102809.7	102778.1		
Log Likelihood (P value for LR test)		-51881.53	-51689.89 (<0001)	-51428.62 (<0001)	-51424.20 (0.002)	-51396.86 (<0001)	-51380.04 (<0001)		

Table S9. Characteristics of different submodels and final	growth model for diastolic blood	pressure (DBP) in men

Model 1: Unconditional mean	Model 2: Unconditional growth	Model 3: Quadratic unconditional growth model	Model 4: Cubic unconditional growth model
Level 1: $DBP_{ij} = b_{oi} + e_{ij}$	model	Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + b_2Age^2_{ij} + e_{ij}$	Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + b_{ij}$
Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + e_{ij}$	Level 2: $\mathbf{b}_{oi} = \mathbf{\beta}_0 + \mathbf{u}_{0i}$	$b_3Age_{ij}^3 + e_{ij}$
	Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 2: $b_{1i} = \beta_1$	Level 2: $b_{oi} = \beta_0 + u_{0i}$
	Level 2: $b_{1i} = \beta_1$	Level 2: $b_{2i} = \beta_2$	Level 2: $b_{1i} = \beta_1$
			Level 2: $b_{2i} = \beta_2$
			Level 2: $b_{3i} = \beta_3$

Model 5: Cubic growth model with the intercept and slope variat Level 1: DBP_{ij}= $b_{0i} + b_1Age_{ij} + b_2Age^{2}_{ij} + b_3Age^{3}_{ij} + e_{ij}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$

Model 5: Cubic growth model with the intercept and slope variability Level 1: DBP_{ij}= $b_{0i} + b_1Age_{ij} + b_2Age^{2}_{ij} + b_3Age^{3}_{ij} + e_{ij}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ **Final Model:** Was obtained with adding following error structure into Model 5: **RCS:** Was not adjusted for residual correlation structure **RH:** $\sigma^2 \times e^{2\delta \times Age}$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

	Value (Standard Error), P value							
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Final model	
Intercept	βo	75.10 (0.12), <0.001	75.36 (0.11), <0.001	76.14 (0.13), <0.001	76.12 (0.13), <0.001	76.14 (0.13), <0.001	76.13 (0.13), <0.001	
Age	β1		0.17 (0.006), <0.001	0.17 (0.006), <0.001	0.24 (0.01), <0.001	0.26 (0.01), <0.001	0.26 (0.01), <0.001	
Age ²	β2			-0.04 (0.003), <0.001	-0.04 (0.01), <0.001	-0.04 (0.003), <0.001	-0.04 (0.003), <0.001	
Age ³	β3				-0.003 (0.0004), <0.001	-0.003 (0.0004), <0.001	-0.004 (0.0004), <0.001	
Variance of random intercept	$\sigma^2 u_0$	53.77 (1.45)	46.51 (1.29)	45.82 (1.28)	45.56 (1.27)	44.62 (1.36)	44.45 (1.37)	
Variance of random Age term	$\sigma^2 u_1$					0.02 (0.004)	0.02 (0.004)	
AIC		143780.1	143154.4	142991.5	142919.4	142809.6	142651.2	
Log Likelihood (P value for LR test)		-71887.06	-71573.22 (<0.001)	-71490.75 (<0.001)	-71453.7 (<0.001)	-71396.8 (<0.001)	-71316.63 (<0.001)	

Model 1: Unconditional mean	Model 2: Unconditional growth	Model 3: Quadratic unconditional growth	Model 4: Cubic unconditional growth model
Level 1: $DBP_{ij} = b_{oi} + e_{ij}$	model	model	Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + b_3Age^{3}_{ij} + e_{ij}$
Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + e_{ij}$	Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + e_{ij}$	Level 2: $b_{oi} = \beta_0 + u_{0i}$
	Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 2: $\mathbf{b}_{oi} = \mathbf{\beta}_0 + \mathbf{u}_{0i}$	Level 2: $b_{1i} = \beta_1$
	Level 2: $b_{1i} = \beta_1$	Level 2: $b_{1i} = \beta_1$	Level 2: $b_{2i} = \beta_2$
		Level 2: $b_{2i} = \beta_2$	Level 2: $b_{3i} = \beta_3$
Model 5: Cubic growth model w	ith the intercept and slope variability	Final Model: Was obtained with	h adding following error structure into Model 5:
Level 1: $DBP_{ij} = b_{oi} + b_1Age_{ij} + b_1Age_{ij}$	$_2Age^{2}_{ij} + b_3Age^{3}_{ij} + e_{ij}$	RCS: Was not adjusted for residuated	dual correlation structure
Level 2: $b_{oi} = \beta_0 + u_{0i}$		RH: $\sigma^2 \times e^{2\delta \times Age}$	

Model 5: Cubic growth model with the intercept and slope variability Level 1: DBP_{ij}= $b_{0i} + b_1Age_{ij} + b_2Age^2_{ij} + b_3Age^3_{ij} + e_{ij}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

	Value (Standard Error), P value							
	Notation	Model 1	Model 2	Model 3	Model 4	Final model		
Intercept	ßo	1.03 (0.004), <0.001	1.03 (0.003), <0.001	1.02 (0.004), <0.001	1.02 (0.004), <0.001	1.02 (0.004), <0.001		
Age	β1		0.007 (0.0001), <0.001	0.01 (0.0001), <0.001	0.01 (0.0002), <0.001	0.01 (0.0002), <0.001		
Age ²	β2			0.001(0.0001), <0.001	0.001(0.0001), <0.001	0.001(0.0001), <0.001		
Variance of random intercept	$\sigma^2 u_0$	0.04 (0.001)	0.04 (0.001)	0.04 (0.001)	0.04 (0.001)	0.03 (0.001)		
Variance of random Age term	$\sigma^2 u_1$				0.00002 (0.000003)	0.000004(0.000003		
AIC		-4891.253	-6431.502	-6489.027	-6626.129	-6823.337		
Log Likelihood (P value for LR test)		2448.627	3219.751 <0.001	3249.513 <0.001	3320.065 <0.001	3420.668 <0.001		
Model 1: Unconditional meanModel 2: Unconditional groLevel 1: HDL _{ij} = $b_{0i} + e_{ij}$ Level 1: HDL _{ij} = $b_{0i} + b_1Age$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{1i} = \beta_1$								
Model 4: Quadratic unconditional growth model Level 1: DBP _{ij} = $b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{2i} = \beta_2$			nal Model: Was obta odel 4: C S: First-Order Auto H: σ ² × Age ^{2δ}	ined with adding followin regressive	ng error structure into			

Table S11. Characteristics of different submodels and final growth model for high density lipoprotein cholesterol (HDL-C) in men

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 4 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

	Value (Standard Error), P value								
	Notation	Model 1	Model 2	Model 3	Model 4	Final model			
Intercept	βo	1.24 (0.004), <0.001	1.25 (0.004), <0.001	1.25 (0.004), <0.001	1.26 (0.004), <0.001	1.26 (0.005), <0.001			
Age	β1		0.009 (0.0002), <0.001	0.009 (0.0002), <0.001	0.01 (0.0002), <0.001	0.01 (0.0002), <0.001			
Age ²	β2			0.00006 (0.00009), 0.516	0.0005 (0.0001), <0.001	0.0005 (0.0001), <0.001			
Variance of random intercept	$\sigma^2 u_0$	0.05 (0.001)	0.07 (0.001)	0.07 (0.001)	0.07 (0.002)	0.07 (0.002)			
Variance of random Age term	$\sigma^2 u_1$				0.00003 (0.000004)	0.00003 (0.000005)			
AIC		1814.589	-86.87082	-109.4839	-203.3837	-210.0115			
Log Likelihood (P value for LR test)		-904.2946	47.43541 (<0.001)	59.74194 (<0.001)	108.69188 (<0.001)	113.0058 (0.003)			
Model 1: Unconditional mean Level 1: HDL- $C_{ij} = b_{oi} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$	$bl 1: HDL-C_{ij} = b_{0i} + e_{ij}$ Level 1: HDL-C _{ij} = b_{0i} + b_1Age_i								
Model 4: Quadratic unconditional grow Level 1: HDL-C _{ij} = $b_{0i} + b_1Age_{ij} + b_2Age_{0i}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$		Μ	lodel 4:	ained with adding followin	-				

Table S12. Characteristics of different submodels and final growth model for high density lipoprotein cholesterol (HDL-C) in women

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

Level 2: $b_{1i} = \beta_1 + u_{1i}$

Level 2: $b_{2i} = \beta_2$

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

RH: $\sigma^2 \times |\text{Age}|^{2\delta}$

Models 1 to 4 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

Value (Standard Error), P value									
Notation	Model 1	Model 2	Model 3	Model 4	Final model				
βo	4.98 (0.01), <0.001	4.98 (0.01), <0.001	5.14 (0.02), <0.001	5.15 (0.02), <0.001	5.17 (0.02), <0.001				
β1		-0.003 (0.0007), <0.001	-0.0005(0.0007), 0.476	-0.004 (0.001), <0.001	-0.003 (0.001), 0.036				
β2			-0.008 (0.0003), <0.001	-0.008 (0.0004), <0.001	-0.008 (0.0004), <0.001				
β3				0.0001 (0.00003), <0.001	0.0001 (0.00004) <0.001				
$\sigma^2 u_0$	0.62 (0.02)	0.63 (0.02)	0.64 (0.02)	0.64 (0.02)	0.62 (0.02)				
	33991.55	33974.32	33454.35	33405.58	32981.21				
	-16992.77	-16983.16 (<0.001)	-16722.17 (<0.001)	-16696.79 (<0.001)	-16469.61 (<0.001)				
Model 2: Unconditional growth model Level 1: $TC_{ij}=b_{oi} + b_1Age_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$			Model 3: Quadratic unconditional growth model Level 1: $TC_{ij}=b_{oi} + b_1Age_{ij} + b_2Age^2_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$						
	$β_0$ $β_1$ $β_2$ $β_3$ $σ^2 u_0$ Model 2: Unc Level 1: TC _{ij} = Level 2: b _{oi} =	$β_0$ 4.98 (0.01), <0.001 $β_1$ <0.001 $β_2$ $β_3$ $σ^2 u_0$ 0.62 (0.02) 33991.55 Model 2: Unconditional growth is Level 1: TC _{ij} = b _{oi} + b ₁ Age _{ij} + e _{ij} Level 2: b _{oi} = $β_0$ + u _{0i}	β_0 $4.98 (0.01), \\ <0.001$ $4.98 (0.01), \\ <0.001$ β_1 $-0.003 (0.0007), \\ <0.001$ β_2 $-0.003 (0.0007), \\ <0.001$ β_3 $-0.003 (0.002)$ $\sigma^2 u_0$ $0.62 (0.02)$ $0.63 (0.02)$ 33991.55 33974.32 -16992.77 $-16983.16 \\ (<0.001)$ Model 2: Unconditional growth model Level 1: $TC_{ij} = b_{oi} + b_1Age_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$	Notation Model 1 Model 2 Model 3 β_0 4.98 (0.01), <0.001 4.98 (0.01), <0.001 5.14 (0.02), <0.001 β_1 -0.003 (0.0007), <0.001 -0.0005(0.0007), 0.476 β_2 -0.008 (0.0003), <0.001 -0.008 (0.0003), <0.001 β_3 -0.62 (0.02) 0.63 (0.02) 0.64 (0.02) σ^2 u_0 0.62 (0.02) 0.63 (0.02) 0.64 (0.02) 33991.55 33974.32 33454.35 -16992.77 -16983.16 (<0.001) -16722.17 (<0.001) Model 2: Unconditional growth model Level 1: TC _{ij} = b _{oi} + b ₁ Age _{ij} + e _{ij} Level 2: b _{oi} = β_0 + u _{0i} Model 3: Quad Level 1: TC _{ij} = β_1	Notation Model 1 Model 2 Model 3 Model 4 β_0 4.98 (0.01), <0.001 4.98 (0.01), <0.001 5.14 (0.02), <0.001 5.15 (0.02), <0.001 β_1 -0.003 (0.0007), <0.001 -0.0005(0.0007), 0.476 -0.004 (0.001), <0.001 β_2 -0.008 (0.0003), <0.001 -0.008 (0.0003), <0.001 -0.008 (0.0003), <0.001 β_3 - -				

Table S13. Characteristics of different submodels and final growth model for total cholesterol (TC) in men

Model 4: Cubic unconditional growth model
Level 1: TC _{ij} = b_{oi} + b_1Age_{ij} + $b_2Age^{2}_{ij}$ + $b_3Age^{3}_{ij}$ + e_{ij}
Level 2: $b_{0i} = \beta_0 + u_{0i}$
Level 2: $b_{1i} = \beta_1$
Level 2: $b_{2i} = \beta_2$
Level 2: $b_{3i} = \beta_3$

Final Model: Was obtained with adding following error structure into Model 4: **RCS:** General correlation structure **RH:** Was not adjusted for variance structure

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 4 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

AIC: Akaike Information Criterion; Log Likelihood represents the maximum likelihood estimator of the parameter, and P value is a test of this difference using a likelihood ratio (LR) test; RCS: Residual correlation structure; RH: Residual heteroscedasticity

	Value (Standard Error), P value									
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Final model			
Intercept	βo	5.11 (0.01), <0.001	5.13 (0.01), <0.001	5.27 (0.01), <0.001	5.27 (0.01), <0.001	5.27 (0.01), <0.001	5.26 (0.01), <0.001			
Age	β1		0.01 (0.001), <0.001	0.01 (0.001), <0.001	0.03 (0.001), <0.001	0.03 (0.001), <0.001	0.03 (0.001), <0.001			
Age ²	β2			-0.01 (0.0003), <0.001	-0.01 (0.0003), <0.001	-0.01 (0.0003), <0.001	-0.005 (0.0004), <0.001			
Age ³	β3				-0.001 (0.00003), <0.001	-0.001 (0.00003), <0.001	-0.001(0.00004) <0.001			
Variance of random intercept	$\sigma^2 u_0$	0.66 (0.02)	0.55 (0.01)	0.57 (0.01)	0.56 (0.01)	0.51 (0.01)	0.46 (0.01)			
Variance of random Age term	$\sigma^2 u_1$					0.0007(0.00006)	0.0003 (0.00006			
AIC		49834.05	49513.67	48964.68	48623.72	48434.96	47594.15			
Log Likelihood (P value for LR test)		-24914.03	-24752.84 (<0.001)	-24477.34 (<0.001)	-24305.86 (<0.001)	-24209.48 (<0.001)	-23787.08 (<0.001)			

Table S14. Characteristics of different submodels and final growth model for total cholesterol (TC) in women

Model 3: Quadratic unconditional growth model Level 1: $TC_{ij}=b_{oi}+b_1Age_{ij}+b_2Age^{2}_{ij}+e_{ij}$ Level 2: $b_{oi}=\beta_0+u_{0i}$ Level 2: $b_{1i}=\beta_1$ Level 2: $b_{2i}=\beta_2$ $\begin{array}{l} \textbf{Model 4: Cubic unconditional growth model} \\ Level 1: TC_{ij} = b_{oi} + b_1 Age_{ij} + b_2 Age^2_{ij} + b_3 Age^3_{ij} + e_{ij} \\ Level 2: b_{oi} = \beta_0 + u_{0i} \\ Level 2: b_{1i} = \beta_1 \\ Level 2: b_{2i} = \beta_2 \\ Level 2: b_{3i} = \beta_3 \end{array}$

Model 5: Cubic growth model with the intercept and slope variability Level 1: $TC_{ij} = b_{oi} + b_1Age_{ij} + b_2Age^2_{ij} + b_3Age^3_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$ **Final Model:** Was obtained with adding following error structure into Model 5: **RCS:** First-Order Autoregressive **RH:** $\sigma^2 \times e^{2\delta \times Age}$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

		Value (Standard Error), P value						
	Notation	Model 1	Model 2	Model 3	Model 4	Model 5	Final model	
Intercept	β0	0.48 (0.01), <0.001	0.47 (0.01), <0.001	0.57 (0.01), <0.001	0.57 (0.01), <0.001	0.57 (0.01), <0.001	0.57 (0.01), <0.001	
Age	β1		-0.002 (0.0004), <0.001	-0.001 (0.0004), <0.01	-0.005 (0.0005), <0.001	-0.004 (0.0006), <0.001	-0.004 (0.0006), <0.001	
Age ²	β2			-0.004 (0.0002), <0.001	-0.004 (0.0002), <0.001	-0.004 (0.0002), <0.001	-0.005 (0.0002), <0.001	
Age ³	β3				0.0001 (0.00002), <0.001	0.0001 (0.00002), <0.001	0.0001 (0.00002), <0.001	
Variance of random intercept	$\sigma^2 u_0$	0.17 (0.005)	0.17 (0.005)	0.17 (0.005)	0.17 (0.005)	0.17 (0.005)	0.16 (0.005)	
Variance of random Age term	$\sigma^2 u_1$					0.00009 (0.00001)	0.00002 (0.00001)	
AIC		13657.48	13619.7	13007.22	12938.91	12840.78	12600.77	
Log Likelihood (P value for Li test)	R	-6825.74	-6805.85 (<0.001)	-6498.609 (<0.001)	-6463.453 (<0.001)	-6412.392 (<0.001)	-6290.387 (<0.001)	
Model 1: Unconditional mean Level 1: $TC_{ij} = b_{oi} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$	Model 2: Uncondition Level 1: $TC_{ij}=b_{0i}+b_{1i}$ Level 2: $b_{0i}=\beta_0+u_{0i}$ Level 2: $b_{1i}=\beta_1$	$a_1Age_{ij} + e_{ij}$	Model 3: Quadratic unconditional growth model Level 1: $TC_{ij}=b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + e_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$		e ² _{ij} +e _{ij} Lev Lev Lev	Model 4: Cubic unconditional growth model Level 1: $TC_{ij}=b_{oi} + b_1Age_{ij} + b_2Age^{2}_{ij} + b_3Age^{3}_{ij} + c_{ij}$ Level 2: $b_{oi} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$		

Table S15. Characteristics of different submodels and final growth model natural logarithm of triglyceride (Ln-TG) in men

Model 5: Cubic growth model with the intercept and slope variability Level 1: $TC_{ij} = b_{0i} + b_1Age_{ij} + b_2Age^2_{ij} + b_3Age^3_{ij} + e_{ij}$ Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1 + u_{1i}$ Level 2: $b_{2i} = \beta_2$ Level 2: $b_{3i} = \beta_3$ **Final Model:** Was obtained with adding following error structure and the structure of the structure of the structure and the structure of the structure and the structur

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

	Notation	Value (Standard Error), P value					
		Model 1	Model 2	Model 3	Model 4	Model 5	Final model
Intercept	βο	0.32 (0.01), <0.001	0.33 (0.01), <0.001	0.38 (0.01), <0.001	0.38 (0.01), <0.001	0.38 (0.01), <0.001	0.39 (0.01), <0.001
Age	β1		0.003 (0.0003), <0.001	0.004 (0.0003), <0.001	0.01 (0.0004), <0.001	0.01 (0.0004), <0.001	0.01 (0.0005), <0.001
Age ²	β2			-0.003 (0.0001), <0.001	-0.003 (0.0001), <0.001	-0.002 (0.0001), <0.001	-0.003 (0.0001), <0.001
Age ³	β3				-0.0001 (0.00001), <0.001	-0.0001 (0.00001), <0.001	-0.0001 (0.00001 <0.001
Variance of random intercept	$\sigma^2 u_0$	0.16 (0.004)	0.15 (0.003)	0.15 (0.004)	0.15 (0.004)	0.15 (0.004)	0.14 (0.003)
Variance of random Age term	$\sigma^2 u_1$					0.00005 (0.00001)	0.00005 (0.00001
AIC		17363.1	17143.56	16738.47	16666.37	16627.17	16474.67
Log Likelihood (P value for LR test)		-8678.548	-8567.78 (<0.001)	-8364.235 (<0.001)	-8327.183 (<0.001)	-8305.587 (<0.001)	-8228.335 (<0.001)

Table S16. Characteristics of different submodels and final growth model natural logarithm of triglyceride (Ln-TG) in women

Model 1: Unconditional mean	Model 2: Unconditional growth model	Model 3: Quadratic unconditional growth model	Model 4: Cubic unconditional growth model
Level 1: $TC_{ij} = b_{oi} + e_{ij}$	Level 1: $TC_{ij} = b_{oi} + b_1 Age_{ij} + e_{ij}$	Level 1: TC _{ij} = $b_{oi} + b_1 Age_{ij} + b_2 Age_{ij}^2 + e_{ij}$	Level 1: TC _{ij} = b_{oi} + b_1Age_{ij} + $b_2Age^2_{ij}$ + $b_3Age^3_{ij}$ + e_{ij}
Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 2: $b_{oi} = \beta_0 + u_{0i}$	Level 2: $b_{oi} = \beta_0 + u_{0i}$
	Level 2: $b_{1i} = \beta_1$	Level 2: $b_{1i} = \beta_1$	Level 2: $b_{1i} = \beta_1$
		Level 2: $b_{2i} = \beta_2$	Level 2: $b_{2i} = \beta_2$
			Level 2: $b_{3i} = \beta_3$

Model 5: Cubic growth model with the intercept and slope variability	Final Model: Was obtained with adding following error structure into Model 5:
Level 1: TC _{ij} = b_{oi} + b_1Age_{ij} + $b_2Age^2_{ij}$ + $b_3Age^3_{ij}$ + e_{ij}	RCS: Was not adjusted for residual correlation structure
Level 2: $b_{0i} = \beta_0 + u_{0i}$	RH: $\sigma^2 \times e^{2\delta \times Age}$
Level 2: $b_{1i} = \beta_1 + u_{1i}$	

Level 2: $b_{2i} = \beta_2$

Level 2: $b_{3i} = \beta_3$

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

Models 1 to 5 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

		Value (Standard Error), P value			
	Notation	Model 1	Model 2	Final model	
Intercept	βo	5.80 (0.02), <0.001	5.78 (0.02), <0.001	5.81 (0.02), <0.001	
Age	βı		0.05 (0.001), <0.001	0.04 (0.001), <0.001	
Variance of random intercept	$\sigma^2 u_0$	1.12 (0.05)	1.02 (0.04)	0.96 (0.02)	
AIC		50587.49	49337.88	49220.22	
Log Likelihood (P value for LR	test)	-25290.74	-24664.94 (<0.001)	-24591.11 (<0.001)	
Model 1: Unconditional mean Level 1: $BMI_{ij}=b_{oi}+e_{ij}$ Level 2: $b_{oi}=\beta_0+u_{0i}$	Model 2: Unconditional group Level 1: $BMI_{ij}=b_{oi}+b_1Age$	$e_{ij} + e_{ij}$ into M	Final Model: Was obtained with adding following error stru into Model 2: RCS: General correlation structure		

Table S17. Characteristics of different submodels and final growth model for 2-h post-load plasma (2-hPG) in men

Level 2: $b_{0i} = \beta_0 + u_{0i}$ Level 2: $b_{1i} = \beta_1$

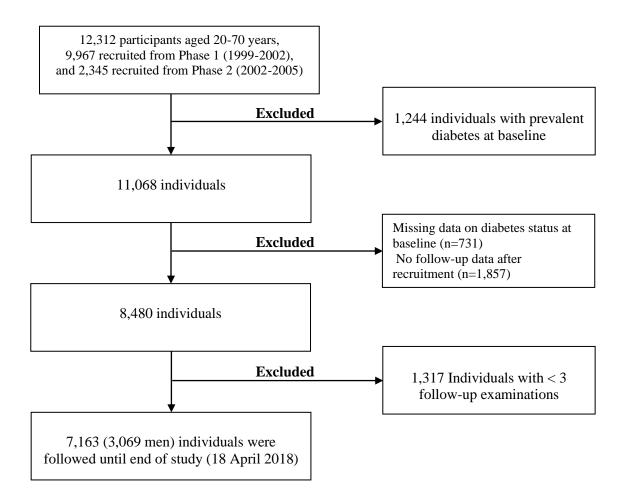
RCS: General correlation structure RH: Was not adjusted for variance structure

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

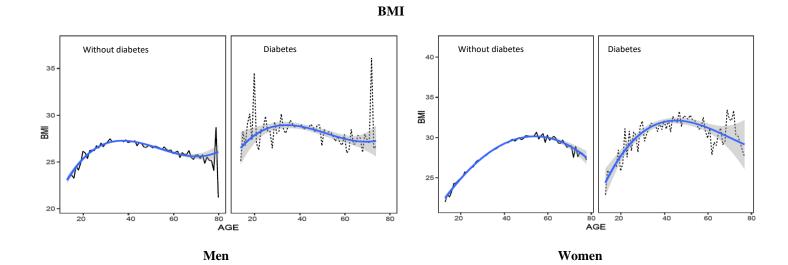
 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of $\beta_{\mathbf{k}}$ in the population for individual *i*.

Models 1 and 2 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (Final model).

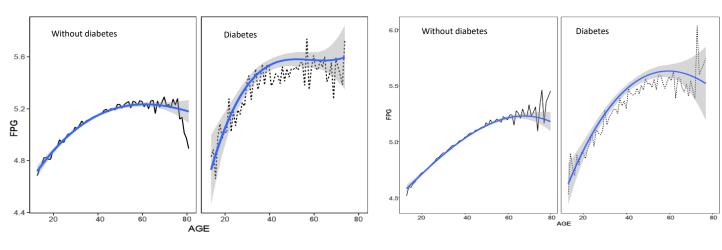
	Value (Standard Error), P value			
	Notation	Model 1	Model 2	Final model
Intercept	βο	6.05 (0.02), <0.001	6.12 (0.02), <0.001	6.13 (0.02), <0.001
Age	β1		0.04 (0.001), <0.001	0.04 (0.001), <0.001
Variance of random intercept	$\sigma^2 u_0$	1.02 (0.04)	0.84 (0.03)	0.74 (0.03)
AIC		63983.61	62302.42	62002.42
Log Likelihood (P value for LR test)		-31988.81	-31147.21 (<0.001)	-30995.21 (<0.001)


 $\begin{array}{l} \textbf{Model 1: } Unconditional mean} \\ Level 1: BMI_{ij} = b_{oi} + e_{ij} \\ Level 2: b_{oi} = \beta_0 + u_{0i} \end{array}$

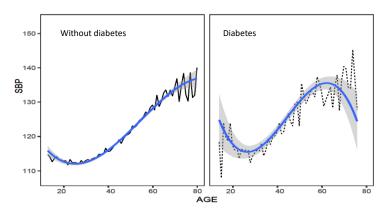
Model 2: Unconditional growth model Level 1: $BMI_{ij}=b_{oi}+b_1Age_{ij}+e_{ij}$ Level 2: $b_{oi}=\beta_0+u_{0i}$ Level 2: $b_{1i}=\beta_1$ **Final Model:** Was obtained with adding following error structure into Model 2: **RCS:** First-Order Autoregressive **RH:** $\sigma^2 \times e^{2\delta \times Age}$

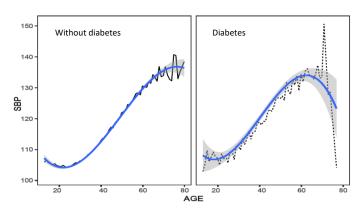

In level 1 of growth models, change over time is modelled at individual-level, and in level 2, it is modelled at group-level.

 β_k represent population parameter or fixed effect; \mathbf{b}_{ki} represent individual component or random effects; \mathbf{u}_{ki} represents the deviation of \mathbf{b}_{ki} from the value of β_k in the population for individual *i*.

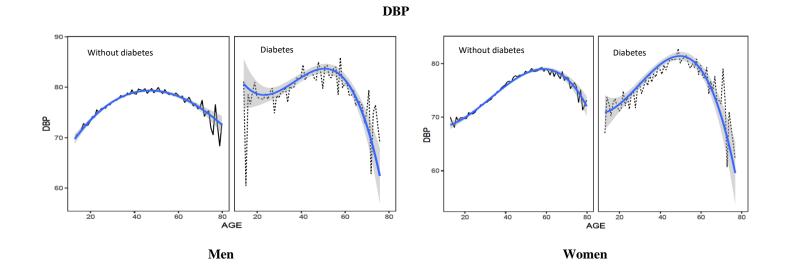

Models 1 and 2 were developed without testing residual correlation structure and residual heteroscedasticity, and after reaching the optimal function, three commonly examined types of correlation and variance structure were tested to select the optimal error structure (**Final model**).

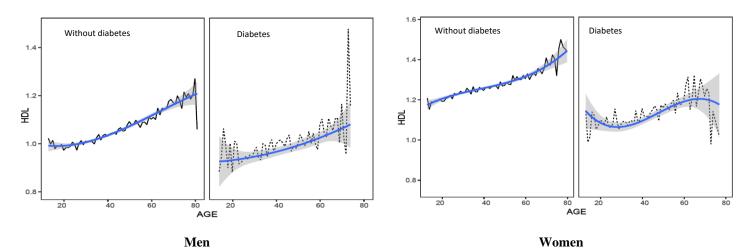
Supplementary Figure 1: Study sample selection flow chart, Tehran Lipid and Glucose Study

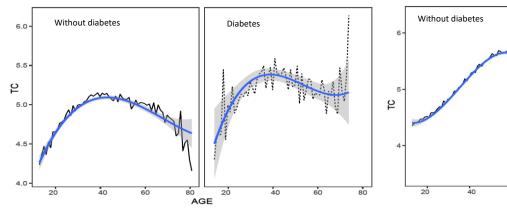


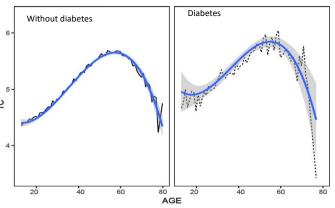

Men

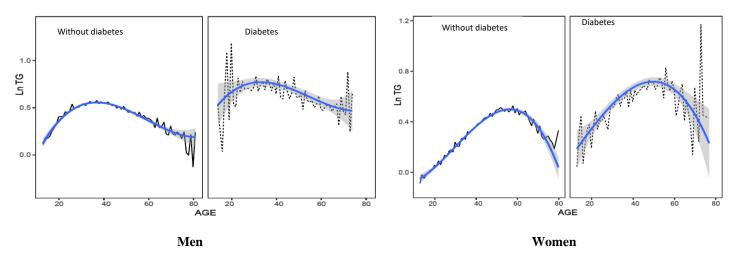
Women


SBP

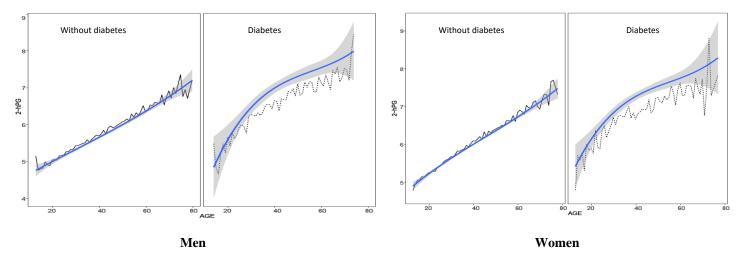

Men


Women





Men



Women

Supplementary Figure 2: Mean predicted value for metabolic risk factors from mixed effects models by gender.

The solid and dotted black lines are predictions based on combined fixed and random effects, and the smooth lines were computed using generalized additive model (GAM) with polynomial function. Grey shading indicates \pm SE

BMI: body mass index; **FPG:** fasting plasma glucose; **TC:** total cholesterol; **SBP:** systolic blood pressure; **DBP:** diastolic blood pressure; **HDL-C:** high-density lipoprotein cholesterol; **2-hPG:** 2-h post-load plasma; **Ln-TG:** natural logarithm of triglyceride; **SE:** standard error