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Supplementary Technical Information: 

DNA isolation from adipose tissue: Subcutaneous adipose tissue near the umbilicus was collected by Bergstrom needle 

from participants after an overnight fast. Biopsies were immediately rinsed in sterile saline, quick-frozen in liquid 

nitrogen, and stored at -800C. Genomic DNA from ~100 mg of frozen subcutaneous adipose tissue biopsies was isolated 

with the Qiagen DNeasy tissue kit (Cat#69504). Briefly, tissue samples were incubated at 56 0C for 3 hours in 450 l of 

ATL buffer and 30 l of proteinase K (Qiagen, Cat # 19131) to achieve complete lysis. RNase A solution (4 l, 100 

mg/ml; Qiagen RNase A Solution Cat # 19101) was then added to the lysed tissue samples and were further incubated at 

room temperature for four minutes. DNA was eluted through DNeasy mini spin column by adding 60 l Elution Buffer 

(AE Buffer). Concentration and purity of isolated DNA samples were checked spectrophometrically by Nanodrop. 

Extraction for samples with low yield (<40ng/l) and quality (A260/280 <1.8) was repeated to obtain DNA suitable for 

DNA methylation profiling. 

DNA methylation profiling:    Epigenome-wide profiling of DNA methylation levels was performed by Reduced 

Representation Bisulfite Sequencing (RRBS). The DNAm profiling and bioinformatics analysis of RRBS data was 

conducted by Diagenode RRBS service (Diagenode, Belgium). Genomic DNA samples were checked to ensure 

availability of high quality DNA for library preparation with the capillary electrophoretic system Fragment AnalyzerTM 

and the DNF-487 Standard Sensitivity Genomic DNA Analysis Kit (Advanced Analytical). DNA concentration was 

measured fluorometrically using the Qubit® dsDNA BR Assay Kit (Thermo Fisher Scientific). RRBS libraries were 

prepared using the Premium Reduced Representation Bisulfite Sequencing Kit (Diagenode Cat# C02030033). Briefly, 

100ng of genomic DNA were used to start library preparation for each sample. Following library preparation, samples 

were analyzed by qPCR to assess the efficiency of this step. According to the Ct values obtained by the qPCR and making 

sure that each pool incorporates samples with different indexes, 7 or 8 samples were pooled together. Pooled samples 

were bisulfite-converted and a second qPCR was carried out to estimate the cycle number for library PCR amplification. 

Following final amplification, clean-up was performed using a 1.45x beads:sample ratio of Agencourt® AMPure® XP 

(Beckman Coulter). After completing the library preparation, the pools were quality checked before sequencing. DNA 

concentration of the pools was measured using the Qubit® dsDNA HS Assay Kit (Thermo Fisher Scientific) and the 

profiles were analyzed using the High Sensitivity DNA chip for 2100 Bioanalyzer (Agilent). RRBS library pools were 

sequenced on a HiSeq3000 (Illumina) using 50 bp single-read sequencing (SR50) to obtain at least 30 million 

reads/sample.  



Bioinformatic Analysis of RRBS data: Adapter removal and read trimming of raw sequence data was performed using 

Trim Galore! version 0.5.0 (1) for RRBS libraries (--rrbs parameter), followed by a quality control with the FastQC tool (-

-fastqc parameter) (2). Reads smaller than 15 nucleotides after adapter removal and trimming were discarded (--length 15 

parameter). The cleaned reads were then aligned to the Homo sapiens reference genome (Genome Reference Consortium 

37, hg19) using Bismark v0.20.0 (3) with default parameters. Bismark is a specialized tool for mapping bisulfite-treated 

reads such as the ones generated in RRBS-Seq experiments. Bismark requires that the reference genome first undergo an 

in-silico bisulfite conversion while transforming the genome to forward (C -> T) and reverse strand (G -> A). The reads 

producing a unique best hit to one of the bisulfite genomes were then compared to the unconverted genome to identify 

cytosine contexts (CpG, CHG or CHH - where H is A, C or T). The cytosine2coverage and 

bismark_methylation_extractor modules of Bismark were used to infer the methylation state of all cytosines (for every 

single mappable read) and their context, and to compute the percentage methylation. The reported cytosines were filtered 

to get only the CpGs covered. The spike-in control sequences were used at this step to check the bisulfite conversion rates 

and to validate the efficiency of the bisulfite treatment. On average, 40.8 ± 5.8 million sequencing reads were obtained per 

sample. Alignment of this data to the human genome (hg19) resulted in an average of 21.4 ± 3.2 million (median 20.9 

million) uniquely aligned reads per sample, corresponding to 52.4 ± 2.1% average mappability, and 15.1 ± 2.3X average 

coverage. The aligned RRBS data covered 4,708,455 CpGs (≥10X coverage in at least one sample, average 3,770,679 ± 

189,047 CpG detected per sample). MethylKit (4), a R/Bioconductor package, was used to filter the CpG dataset for low 

coverage and for extremely high coverage to discard reads with possible PCR bias (CpGs with coverage higher than the 

99.9th percentile were discarded). The data was then normalized for read coverage distribution between samples. The 

filtering and normalization was done using the functions filterByCoverage(myobj,lo.count=10,lo.perc=NULL, 

hi.count=NULL,hi.perc=99.9) and normalizeCoverage(filtered.myobj), respectively. The normalization was done with the 

methylKit default settings and therefore performed median normalization. Coverage tables and normalized methylation 

values for the CpG sites covered more than 10X in at least 75% of the samples were generated with methylKit by 

specifying the minimal number of samples to meet the required percentage (min.per.group option of methylKit unite 

function set to 172L for 75% of the samples; unite(normalized.myobj,min.per.group= x)). Normalized methylation values 

summarizing methylation information over windows of 1000bp across the genome, and covered more than 10X in at least 

75% of the samples were also generated. Specific functionality in the methylKit package [e.g., tiles <- 



tileMethylCounts(meth, win.size=1000, step.size=1000)] was used for this purpose and was considered as a 

CpG_methylation region.  

Annotation of CpG sites and regions: Selected CpG sites and regions were annotated with the R/Bioconductor package 

‘annotatr’ (http://bioconductor.org/packages/release/bioc/html/annotatr.html) (5). The annotation consisted of two 

categories: (i) distance to a CpG island and (ii) annotation to gene region. The distance related annotations identify 

whether CpG sites/regions overlapp a known CpG island, 2000bp of the flanking regions of the CpG islands (shores), 

2000bp of the flanking regions of the shores (shelves), or outside these regions (cpg_inter or open sea). The gene region 

analysis classifies methylation site/regions in groups in the context of genes, namely, exons, UTRs, introns, promoters, 

and intergenic regions.  Annotations were derived using hg19 data from the built-in annotations for 'hg19_cpgs', 

'hg19_basicgenes', 'hg19_genes_intergenic', and 'hg19_genes_intronexonboundaries'. Additional annotation of CpG sites 

with respect to nearby SNPs was determined using Fast Locus Annotator (FALCAN), an in-house program and the UCSC 

table browser. To identify the regulatory potential of CpG sites, each site was categorized based on its predicted 

chromatin state. Chromatin state annotation data (ChromeHMM, Core 15-state model) was downloaded from the 

Roadmap Epigenomics Project (http://www.roadmapepigenomics.org/) for the three cell types/adult tissue source most 

likely to be related to adipose tissue [Mesenchymal Stem Cell Derived Adipocyte Cultured Cells (E023), Adipose Derived 

Mesenchymal Stem Cell Cultured Cells (E025), and Adipose nuclei (E063)], and merged with the CpG site chromosomal 

position. 

Gene ontology and biological pathway enrichment analysis: Several insulin sensitivity and BMI-associated CpG sites 

are located in genes or gene promoters. The g:GOSt Gene group functional profiling analysis tool (in g:Profiler; 

https://biit.cs.ut.ee/gprofiler/) and DAVID (http://david.abcc.ncifcrf.gov/home.jsp ) were used to determine enrichment of 

these CpG-annotated genes in biological pathways, and cellular and molecular functions.  

In silico deconvolution of adipose tissue cell types: Adipocytes are the most common type of cell in adipose tissue. 

However, adipose tissue is heterogeneous, composed of other cell types including endothelial cells and several immune 

cell subtypes, and its cellular composition changes in response to obesity and other pathophysiological conditions. Direct 

assessment of cell type composition in adipose tissue is challenging (6). In this study, we utilized in silico deconvolution 

to estimate the relative proportions of cell types in adipose tissue. We estimated proportions of cell types using both 

transcriptome and methylome data and two different reference-based methods.  

http://bioconductor.org/packages/release/bioc/html/annotatr.html
https://biit.cs.ut.ee/gprofiler/
http://david.abcc.ncifcrf.gov/home.jsp


In the first method, we used “Adipose Signature Matrix” recently developed by Glastonbury et al (6) using the 

CIBERSORT analytical tool and RNA-seq datasets from reference in vitro cells, including both primary cells and iPSC-

derived cells that are known to be present in subcutaneous adipose tissue. The final CIBERSORT adipose signature 

matrix is comprised of 658 genes. Transcript level data for 506 of these 658 signature genes were available for our 

samples. We used this signature matrix in the CIBERSORTx analytical tool (https://cibersortx.stanford.edu/) (7) to 

deconvolute adipose tissue transcriptome data and estimate the relative proportions of cell types (adipocytes, CD4+ T 

cells, microvascular endothelial cells, M1- and M2-macrophage) of 253 individuals in AAGMEx cohort.  

In the second method, a reference-based deconvolution algorithm was utilized as detailed in a previous study (8). In this 

method, references were collected from the methylation profiles of purified cell types from the Blueprint Epigenome 

Project and the International Human Epigenome Consortium (IHEC) data portal. In total, 30 methylation profiles were 

analyzed from macrophages, neutrophils, B cells, T cells, NK cells, endothelial cells, and adipocytes. Given the paucity of 

adipocyte references with adequate coverage, average methylation levels across all adipose samples in the AAGMEx 

cohort were also used as additional adipocyte reference (since the main cell type of the samples is presumably 

adipocytes), similarly used in Orozco et al (8).  Since the sequencing coverage varies across RRBS samples, the 

methylation data from our cohort was aggregated to only include CpG loci that are covered in at least 80% of the samples 

which resulted in 868,592 CpG loci with sufficient common coverage.  The remaining CpG loci were then imputed using 

nearest neighbor averaging.  References were subsequently filtered to form common sample loci for subsequent analysis. 

First, to determine cell-specific methylation across all references, we used a sliding window to aggregate the methylation 

profiles into regions of at least two CpG loci with similar methylation (within 40% methylation difference across 

neighboring CpG within 500 bp). Selected regions were those uniquely methylated for each cell type to provide 259 cell-

specific hypomethylated regions (composed of 743 reference and 609 sample CpG loci).  Second, a non-negative least 

squares regression was performed using cell-specific regions to estimate the proportion of each cell type within each 

sample. 

Genotyping: As described previously (9), Infinium HumanOmni5Exome-4 v1.1 DNA Analysis BeadChips (Illumina) 

were used to genotype DNA samples from the AAGMEx cohort based on the manufacturer’s instructions.  Genotype data 

were examined to verify sample and SNP quality. Genotype assays of 4,210,443 SNPs passed technical quality filters. 

Genotypes from 2,296,925 autosomal SNP assays (representing 2,210,735 unique high-quality genotyped SNPs with 

minor allele frequency (MAF) >0.01 and Hardy-Weinberg equilibrium-p-value >1x10-6) were used in our published 

https://cibersortx.stanford.edu/


adipose tissue expression quantitative trait (eQTL) analyses (9).  We imputed these genotyped SNPs to the 1000 Genomes 

dataset (1KGP, phase 3 cosmopolitan reference panel) using the genotype imputation program Minimac3, implemented 

on the Michigan Imputation Server (https://imputationserver.sph.umich.edu/). The expanded genotype data set includes 

14,502,313 autosomal genotyped and imputed SNPs (10). In this study, we have used genotype data to determine 

association between methylation sites and the genotype of local SNPs (cis-methylation quantitative trait loci; cis-mQTL) 

only for a selected gene region. 
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Supplementary Figures: 

Supplementary Figure 1. In silico deconvolution of adipose tissue cell types based on transcriptome data. A) Heat 

map shows relative fraction of different cell-types (rows) across adipose tissue samples from 253 African American 

individuals in AAGMEx cohort (columns) estimated by CIBERSORTx analytical tool. The color in the heat map 

represents the relative fraction that each cell contributes to the total in each sample. B) Correlation between cell-type 

composition and glucometabolic phenotypes. The color in the heat map represents the partial correlation coefficient 

adjusted for age and gender. 

 

 

 

 

 

 

 

 



Supplementary Figure 2. In silico deconvolution of adipose tissue cell types based on methylome data. A) Heat map 

shows relative fraction of different cell-types (rows) across adipose tissue samples from 230 African American individuals 

in AAGMEx cohort (columns) estimated by reference-based algorithm based on CpG DNA methylation profile data. The 

color in the heat map represents the relative fraction that each cell contributes to the total in each sample. B) Correlation 

between cell-type composition and glucometabolic phenotypes. The color in the heat map represents the partial 

correlation coefficient adjusted for age and gender. 

 

 

 

 



Supplementary Figure 3. Comparison of EWAS results for Matsuda index, SI and BMI in cell-type adjusted and 

unadjusted analyses. The X-axis of the scatter plot indicates EWAS results from linear regression analysis adjusted for 

age, gender, and admixture, while the Y-axis indicates EWAS results from linear regression analysis adjusted for age, 

gender, admixture and cell-type proportions. The P-value, and Beta for CpG regions that were significantly associated 

(FDR-p≤0.05) with a trait in either cell-type adjusted or unadjusted analysis are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 4. Comparison of TWAS results for Matsuda index, SI and BMI in cell-type adjusted and 

unadjusted analyses. The X-axis of the scatter plot indicates TWAS results from linear regression analysis adjusted for 

age, gender, and admixture, while the Y-axis indicates TWAS results from in linear regression analysis adjusted for age, 

gender, admixture and cell-type proportions. The P-value, and Beta for transcript expression levels that were significantly 

associated (FDR-p≤0.05) with a trait in either cell-type adjusted or unadjusted analysis are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 5. DNA Methylation level at chr2:25,384,001-25,385,000 CpG region determine BMI by 

regulating expression of POMC, and are genetically regulated in adipose tissue of AAGMEx participants. Scatter 

plots show (A) correlation of DNA methylation levels at chr2:25,384,001-25,385,000 CpG region with POMC transcript 

(ILMN_2403664) levels, (B) correlation of POMC transcript (ILMN_2403664) levels with BMI, and (C) correlation of 

DNA methylation levels at chr2:25,384,001-25,385,000 CpG region with BMI. Box plots showing the expression of 

POMC transcript (ILMN_2403664) and DNA methylation level in the top eQTM locus (CpG region chr2:25384001-

25385000) in genotype groups for SNP rs6713396 (chr2: 25384705) and suggest (D) expression quantitative loci (eQTL),  

and (E) methylation quantitative trait loci (mQTL) for POMC in adipose tissue. 

 

 

 

 

 

 

 

 



Supplementary Tables: 

(in Microsoft –Excel file: Supplementary tables-eQTM-DB20-0117-R1-Diabetes.xlsx; can be viewed in Google 

drive link;  https://drive.google.com/file/d/1sHZV526fttTjnkigyvebjO0p1Yq4rUIY/view?usp=sharing) 

Supplementary Table-1: Summary of anthropometric and glucometabolic phenotypes in AAGMEx cohort 

Supplementary Table-2A: cis-eQTM sites for glucometabolic trait-associated transcripts in adipose tissue. 

Analysis identifies association between methylation level of adipose tissue CpG sites (independent variable) and adipose 

tissue transcript level (dependent variable). Models included age, sex and admixture as covariates.  

Of the 7,464 probes for glucometabolic trait-associated transcripts, 7,461 were included in cis-eQTM analysis based on 

CpG sites within and ±100kb of the transcript. Final results focused on 6,774 high quality transcripts. 

cis-eQTMs significant in linear regression analysis (FDR-P<0.05) and partial correlation r (Spearman’s ) ≥  +0.2 or ≤ -0.2 

are shown. 

Results are sorted by absolute value of partial correlation coefficient. 

Genomic annotations of CpG sites were shown primarily from ANNOTATR analysis and adipose tissue/ adipocyte 

chromatin state annotation data (ChromeHMM, Core 15-state model). Additional annotation of CpG sites to SNPs are 

based on FALCAN (Fast Locus Annotator) and UCSC browser SNPbuild151. When CpG sites are included in multiple 

annotations, only one annotation was prioritized in the order of hg19_cpg_islands > cpg_shores cpg_shelves > cpg_inter  

(for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > intronexonboundaries > 

introns > genes_1to5kb > intergenic (for annotation to gene).  

RRBS sequence coverages are from Bismark and methylKit analysis. 

Supplementary Table-2B: cis-eQTM regions for glucometabolic trait-associated transcripts in adipose tissue. 

cis-eQTM analysis is based on CpG regions (tilling window of 1000bp region) within and ±100kb of the transcript. 

Analysis identifies association between methylation level of adipose tissue CpG regions_1000bp (independent variable) 

and adipose tissue transcript level (dependent variable). Models included age, sex and admixture as covariates.  

cis-eQTM regions significant in linear regression analysis (FDR-P<0.05) and partial correlation r (Spearman’s ) ≥  +0.2 or 

≤ -0.2 are shown. 

Results are sorted by absolute value of partial correlation coefficient. 

Genomic annotations of CpG regions were shown from ANNOTATR analysis. When CpG regions are included in 

multiple annotations, only one annotation was prioritized in the order of   hg19_cpg_islands > cpg_shores cpg_shelves > 

cpg_inter (for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > 

intronexonboundaries > introns > genes_1to5kb > intergenic (for annotation to gene).  

Supplementary Table-3: CpG sites associated with Matsuda insulin sensitivity index (from OGTT) 

A total of 26 CpG sites are significantly associated at FDR-P<0.05. Results for CpG sites associated with Matsuda index 

at FDR-P<0.1 in epigenome wide association study (EWAS) are shown. 

Results are sorted by EWAS p-value. 

https://drive.google.com/file/d/1sHZV526fttTjnkigyvebjO0p1Yq4rUIY/view?usp=sharing


Analysis identifies association between methylation level of adipose tissue CpG sites (independent variable) and Matsuda 

index (dependent variable) in linear regression analysis. Models included age, sex and admixture as covariates.  

Genomic annotations of CpG sites were shown primarily from ANNOTATR analysis and adipose tissue/ adipocyte 

chromatin state annotation data (ChromeHMM, Core 15-state model). Additional annotation of CpG sites to SNPs are 

based on FALCAN (Fast Locus Annotator) and UCSC browser SNPbuild151. When CpG sites are included in multiple 

annotations, only one annotation was prioritized in the order of   hg19_cpg_islands > cpg_shores cpg_shelves > cpg_inter  

(for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > intronexonboundaries > 

introns > genes_1to5kb > intergenic (for annotation to gene).  

RRBS sequence coverages are from Bismark and methylKit analysis. 

 

Supplementary Table-4: CpG sites associated with SI (Insulin sensitivity index from FSIGT)  

No CpG site is significantly associated at FDR-P<0.05. Results for CpG sites associated with SI at FDR-P<0.1 in 

epigenome wide association study (EWAS) are shown. 

Results are sorted by EWAS p-value. 

Analysis identifies association between methylation level of adipose tissue CpG sites (independent variable) and SI 

(dependent variable) in linear regression analysis. Models included age, sex and admixture as covariates.  

Genomic annotations of CpG sites were shown primarily from ANNOTATR analysis and adipose tissue/ adipocyte 

chromatin state annotation data (ChromeHMM, Core 15-state model). Additional annotation of CpG sites to SNPs are 

based on FALCAN (Fast Locus Annotator) and UCSC browser SNPbuild151. When CpG sites are included in multiple 

annotations, only one annotation was prioritized in the order of hg19_cpg_islands > cpg_shores cpg_shelves > cpg_inter  

(for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > intronexonboundaries > 

introns > genes_1to5kb > intergenic (for annotation to gene).  

RRBS sequence coverages are from Bismark and methylKit analysis. 

Supplementary Table-5: CpG sites associated with BMI (Body Mass Index)  

A total of 15 CpG sites are significantly associated at FDR-P<0.05. Results for CpG sites associated with BMI at FDR-

P<0.1 in epigenome wide association study (EWAS) are shown. 

Results are sorted by EWAS p-value. 

Analysis identifies association between methylation level of adipose tissue CpG sites (independent variable) and BMI 

(dependent variable) in linear regression analysis. Models included age, sex and admixture as covariates.  

Genomic annotations of CpG sites were shown primarily from ANNOTATR analysis and adipose tissue/ adipocyte 

chromatin state annotation data (ChromeHMM, Core 15-state model). Additional annotation of CpG sites to SNPs are 

based on FALCAN (Fast Locus Annotator) and UCSC browser SNPbuild151. When CpG sites are included in multiple 

annotations, only one annotation was prioritized in the order of   hg19_cpg_islands > cpg_shores cpg_shelves > cpg_inter  

(for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > intronexonboundaries > 

introns > genes_1to5kb > intergenic (for annotation to gene).  

RRBS sequence coverages are from Bismark and methylKit analysis. 

Supplementary Table-6: CpG regions associated with Matsuda insulin sensitivity index (from OGTT) 



Results for CpG regions (tilling window of 1000bp region) associated with Matsuda index at FDR-P<0.05 in epigenome 

wide association study (EWAS) are shown. 

Results are sorted by EWAS p-value. 

Analysis identifies association between methylation level of adipose tissue CpG regions (independent variable) and 

Matsuda index (dependent variable) in linear regression analysis. Models included age, sex and admixture as covariates.  

Genomic annotations of CpG regions were shown from ANNOTATR analysis. When CpG regions are included in 

multiple annotations, only one annotation was prioritized in the order of   hg19_cpg_islands > cpg_shores cpg_shelves > 

cpg_inter (for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > 

intronexonboundaries > introns > genes_1to5kb > intergenic (for annotation to gene).  

 

Supplementary Table-7: CpG regions associated with SI (Insulin sensitivity index from FSIGT)  

Results for CpG regions (tilling window of 1000bp region) associated with SI at FDR-P<0.05 in epigenome wide 

association study (EWAS) are shown. 

Results are sorted by EWAS p-value. 

Analysis identifies association between methylation level of adipose tissue CpG regions (independent variable) and SI 

(dependent variable) in linear regression analysis. Models included age, sex and admixture as covariates.  

Genomic annotations of CpG regions were shown from ANNOTATR analysis. When CpG regions are included in 

multiple annotations, only one annotation was prioritized in the order of   hg19_cpg_islands > cpg_shores cpg_shelves > 

cpg_inter  (for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > 

intronexonboundaries > introns > genes_1to5kb > intergenic (for annotation to gene).  

Supplementary Table-8: CpG regions associated with BMI (Body Mass Index) 

Results for CpG regions (tilling window of 1000bp region) associated with BMI at FDR-P<0.05 in epigenome wide 

association study (EWAS) are shown. 

Results are sorted by EWAS p-value. 

Analysis identifies association between methylation level of adipose tissue CpG regions (independent variable) and BMI 

(dependent variable) in linear regression analysis. Models included age, sex and admixture as covariates.  

Genomic annotations of CpG regions were shown from ANNOTATR analysis. When CpG regions are included in 

multiple annotations, only one annotation was prioritized in the order of   hg19_cpg_islands > cpg_shores cpg_shelves > 

cpg_inter  (for distance to CpG island annotation) and hg19_genes_promoters > 5UTRs > exons > 3UTRs > 

intronexonboundaries > introns > genes_1to5kb > intergenic (for annotation to gene).  

Supplementary Table-9: CpG sites associated with Matsuda index are also cis-eQTM site for Matsuda index-

associated transcripts. 

 

Integration of Matsuda Index CpG site EWAS, cis-eQTM site analysis, and transcript to Matsuda index association 

(TWAS) results. 

 

CpG sites that are eQTM (linear regression analysis and partial correlation FDR-P<0.05 and partial correlation r+/-0.2) for 

a Matsuda index-associated transcript (TWAS, FDR-P<0.01) and CpG site is also associated with Matsuda index (EWAS, 

P<0.01) are shown. 

 



Results are sorted by P_CIT (omnibus P-value from Causal Inference test). 

 

 

Supplementary Table-10: CpG sites associated with SI are also cis-eQTM sites for SI- associated transcripts. 

 

Integration of SI CpG site EWAS, cis-eQTM site analysis, and transcript to SI association (TWAS) results. 

 

CpG sites that are eQTM (linear regression analysis and partial correlation FDR-P<0.05 and partial correlation r+/-0.2) for 

a SI-associated transcript (TWAS, FDR-P<0.01) and are also associated with SI (EWAS, P<0.01) are shown. 

 

Results are sorted by P_CIT (omnibus P-value from Causal Inference test). 

 

Supplementary Table-11: CpG sites associated with BMI are also cis-eQTM sites for BMI- associated transcripts. 

 

Integration of BMI CpG site EWAS, cis-eQTM site analysis, and transcript to BMI association (TWAS) results. 

 

CpG sites that are eQTM (linear regression analysis and partial correlation FDR-P<0.05 and partial correlation r+/-0.2) for 

a BMI-associated transcript (TWAS, FDR-P<0.01) and are also associated with BMI (EWAS, P<0.01) are shown. 

 

Results are sorted by P_CIT (omnibus P-value from Causal Inference test). 

 

Supplementary Table-12: CpG regions associated with Matsuda index are also cis-eQTM regions for Matsuda 

index-associated transcripts. 

 

Integration of Matsuda Index CpG region (tilling window of 1000bp region) EWAS, cis-eQTM region analysis, and 

transcript to Matsuda index association (TWAS) results. 

 

CpG regions that are  are eQTM (linear regression analysis and partial correlation FDR-P<0.05 and partial correlation r+/-

0.2) for a Matsuda index-associated transcript (TWAS, FDR-P<0.01) and are also associated with Matsuda insulin 

sensitivity index (EWAS, P<0.01) are shown. 

 

Results are sorted by P_CIT (omnibus P-value from Causal Inference test). 

 

Supplementary Table-13: CpG regions associated with SI are also cis-eQTM regions for SI-associated transcripts. 

 

Integration of SI CpG region (tilling window of 1000bp region) EWAS, cis-eQTM region analysis, and transcript to SI 

association (TWAS) results. 

 

CpG regions that  are eQTM (linear regression analysis and partial correlation FDR-P<0.05 and partial correlation r+/-0.2) 

for a SI-associated transcript (TWAS, FDR-P<0.01) and are also associated with SI (EWAS, P<0.01) are shown. 

 

Results are sorted by P_CIT (omnibus P-value from Causal Inference test). 

 

Supplementary Table-14: CpG regions associated with BMI are also cis-eQTM regions for BMI-associated 

transcripts. 

 

Integration of BMI CpG region (tilling window of 1000bp region) EWAS, cis -eQTM region analysis, and transcript to 

BMI association (TWAS) results. 

 

CpG regions that are eQTM (linear regression analysis and partial correlation FDR-P<0.05 and partial correlation r+/-0.2) 

for a BMI-associated transcript (TWAS, FDR-P<0.01) and are also associated with BMI (EWAS, P<0.01) are shown. 

 

Results are sorted by P_CIT (omnibus P-value from Causal Inference test). 

 


