Supplemental material

<u>Supplemental Figure 1</u>. (A) Protein abundance of Rab8a following siRNA-mediated knockdown of *Rab8* via IVE in EDL and Soleus muscle from C57BL/6J mice. Data are presented as mean \pm SEM (n = 4). *p < 0.05, non-target control vs. *Rab8a* kd (paired two-tailed Student's t-test). (B) *Ex vivo* fatty acid oxidation in intact isolated Soleus skeletal muscle after *in vivo* electrotransfection-mediated knockdown of *Rab10*. Data are presented as mean \pm SEM (n = 3). non-target control vs. Rab10 kd (paired two-tailed Student's t-test). (C) Relative mRNA expression of *Tbc1d1*, *Rab8a*, *Rab10* and *Rab14* in C2C12 myotubes following siRNA-mediated silencing of *Tbc1d1*. Data are presented as mean \pm SEM (n = 4). *p < 0.05, non-target control vs. *Tbc1d1* kd, (paired two-tailed Student's t-test). (D) Relative mRNA expression of *Tbc1d1*, *Rab8a*, *Rab14* in C2C12 myotubes following siRNA-mediated silencing of *Tbc1d1* in C2C12 myotubes following siRNA-mediated silencing of *Tbc1d1* kd, (paired two-tailed Student's t-test). (D) Relative mRNA expression of *Tbc1d4*, *Rab8a*, *Rab10* and *Rab14* in C2C12 myotubes following siRNA-mediated silencing of *Tbc1d4*. Data are presented as mean \pm SEM (n = 4-5). *p < 0.05, non-target control vs. *Tbc1d1* kd (paired two-tailed Student's t-test).

<u>Supplemental Figure 2</u>. Protein abundance of (A) PDK4, (B) FAT/CD36 and (C) SLC27A4/FATP4 in WT vs. D1KO mouse Tibialis anterior (TA) muscle samples. The corresponding gene expression analysis for *Pdk4*, *Cd36* and *Slc27a4/Fatp4*, respectively, can be seen in the interlaced graphs of either panel figure A, B and C. Data are presented as mean

 \pm SEM (n = 7-16). *p < 0.05 (unpaired two-tailed Student's t-test). Protein abundance of Complexes I – V of the OXPHOS complex in EDL muscle from WT vs. (D) D1KO or (F) D4KO mice and Soleus (SOL) muscle from WT vs. (E) D1KO or (G) D4KO mice. Data are presented as mean \pm SEM (n = 3-7). *p < 0.05 (unpaired two-tailed Student's t-test).

<u>Supplemental Figure 3</u>. (A) Relative mRNA expression of *Pdk4*, *Cd36* and *Slc27a4* (= FATP4) in C2C12 myotubes following siRNA-mediated silencing of *Tbc1d1*. Data are presented as mean \pm SEM (n = 6), non-target control vs. *Tbc1d1* kd (paired two-tailed Student's t-test). (B) Validation of knockdown efficiency via quantitative Realtime-PCR in C2C12 myotubes following siRNA-mediated silencing of both, *Tbc1d1* and FATP4 (*Slc27a4*). Data are presented as mean \pm SEM (n = 4), non-target control vs. *Tbc1d1/Fatp4* kd (paired two-tailed Student's t-test). (C) Uptake of ³H-palmitate into C2C12 myotubes after siRNA-mediated knockdown of *Cd36*. Knockdown (Kd) efficiency for *Cd36* can be seen in the interlaced graph of the panel figure F. Data are presented as mean \pm SEM (n = 6-7). ***p < 0.001, non-target control vs. *Cd36* kd (paired two-tailed Student's t-test). (D) Relative mRNA expression of *Cd36* and *Slc27a4* (= FATP4) in C2C12 myotubes following siRNA-mediated silencing of *Cd36* and

Slc27a4/Fatp4, respectively. Data are presented as mean \pm SEM (n = 4-6), non-target control vs. *Cd36* or *Slc27a4/Fatp4* kd, respectively (one-way ANOVA with Dunnett *post hoc* test).

<u>Supplemental Figure 4</u>. (A) Relative gene expression of genes involved in the myocellular regulation of fatty acid metabolism in skeletal muscle from WT and D1KO mice, respectively. Data are presented as mean \pm SEM (n = 4-14). *p < 0.05 (unpaired two-tailed t-test). (B) Uptake of ³H-palmitate into C2C12 myotubes after siRNA-mediated knockdown of *Rab8a*, *Rab10* and *Rab14* under basal and insulin-stimulated conditions, respectively. Data are presented as mean \pm SEM (n = 5-11). **p < 0.01 between knockdown conditions and ^{##}p < 0.01 for the stimulation with insulin within the respective genotype. (mixed model two-way ANOVA with repeated measures analysis for the Kd condition and Tukey *post hoc* test). (C) Relative gene expression of genes involved in the myocellular regulation of fatty acid metabolism in C2C12 myotubes following siRNA-mediated silencing of *Tbc1d1*. Data are presented as mean \pm SEM (n = 6), non-target control vs. respective *Tbc1d1* kd (paired two-tailed Student's t-test).

Supplemental Table 1: Chemicals and buffer ingredients

Compound	Supplier
5-aminoimidazole-4-carboxyamide-1-β-D-	Toronto Research Chemicals, North York
ribofuranoside (AICAR)	ON, Canada
BSA Fraction V, fatty acid free	Carl Roth, Karlsruhe, Germany
Butyric Acid	Sigma Aldrich, Steinheim, Germany
Complete protease inhibitor cocktail	Roche Diagnostics, Mannheim, Germany
D(+)-Glucose, ≥99.5 %	Sigma Aldrich, Steinheim, Germany
Dulbecco's modified eagle medium (DMEM), high glucose, L-Glutamine, sodium pyruvate, phenol red, w/o HEPES	Gibco at Thermo Fisher Scientific, Darmstadt, Germany
Fetal Bovine Serum (FBS)	Thermo Fisher Scientific, Darmstadt, Germany
Horse Serum (HS)	ATCC at LGC Standards, Wesel, Germany
Invivofectamine 2.0	Invitrogen, Carlsbad, California
Isoflurane	Piramal, Morpeth, UK
Oleic Acid	Sigma Aldrich, Steinheim, Germany
Palmitic Acid Sigma Ultra approx. 99 %	Sigma Aldrich, Steinheim, Germany
Pentadecanoic acid	Sigma Aldrich, Steinheim, Germany
PhosSTOP phosphatase inhibitor cocktail	Roche Diagnostics, Mannheim, Germany
Protease inhibitor cocktail	Roche Diagnostics, Mannheim, Germany

Supplemental Table 2: Buffers and cell culture media

Description	Ingredients	
C2C12 culture medium	DMEM (4.5 g/L glucose), 10 vol % FCS, 1	
	vol % P/S	
C2C12 differentiation madium	DMEM (4.5 g/L glucose), 2 vol % HS, 1 vol	
	% P/S	
C2C12 starvation medium	DMEM (4.5 g/L glucose), 1 vol % P/S	
C2C12 transfection medium	DMEM (4.5 g/l glucose)	
En vive fatty agid avidation (untake HOT	KHB, 15 mM mannitol, 5 mM glucose, 0.6	
<i>Ex vivo</i> faily actu oxidation/uptake HOT	mM cold palmitate, 20 % fatty acid-free	
incubation buller	BSA, 1.4 µM ³ H-palmitate	
<i>Ex vivo</i> fatty acid oxidation/uptake pre-	KHB, 15 mM mannitol, 5 mM glucose, 3.5	
incubation buffer	mM fatty acid-free BSA	
	C2C12 differentiation medium, 11.8 µM	
In vitro fatty acid oxidation HOT buffer	¹⁴ C-palmitate, 6.24 μM fatty acid-free BSA,	
	1 μM L-carnitine	
	KRH, 8.5 nM ³ H-palmitate/-oleate/-butyrate,	
In vitro fatty acid uptake HOT buffer	2.5 μ M fatty acid-free BSA, 5 μ M unlabeled	
	cold palmitate/oleate/butyrate	
<i>In vitro</i> fatty acid uptake pre-HOT buffer	KRH, 40 µM fatty acid-free BSA	
<i>In vitro</i> fatty acid uptake washing buffer KRH, 0.1 % fatty acid-free BSA		
	Stock I: 118.5 mM NaCl, 0.047 mM KCl,	
Krebs-Henseleit buffer (KHB)	0.012 mM KH ₂ PO ₄ , 0.25 mM NaHCO ₃	
	Stock II: 0.025 mM CaCl ₂ , 0.012 mM	
	MgSO ₄ , 0.05 mM HEPES	

Description	Ingredients
Krebs-Ringer-HEPES (KRH) buffer (pH	136 mM NaCl, 4.7 mM KCl, 1.25 mM
7.4)	MgSO ₄ , 1.25 mM CaCl ₂ , 10 mM HEPES
Lysis buffer (for tissue and cell protein	20 mM Tris-HCl, 150 mM NaCl, 1 mM
isolation)	EDTA, 1 mM EGTA, 1 % Triton X-100
Protoin lucis huffer	20 mM Tris-HCL, 150 mM NaCl, 1 mM
	EDTA, 1 mM EGTA, 1% Triton X-100
SDS-PAGE 1x electrophoresis buffer	25 mM Tris-HCl, 192 mM Glycine, 0.1 %
	(w/v) SDS
SDS-PAGE 1x separation gel buffer (pH	500 mM Tris-HCl, 0.4 % SDS
8.8)	
SDS-PAGE 1x stacking gel buffer (pH 6.8)	0.5 M Tris, 0.4 % SDS
Transfer buffer (Tank blotting)	25 mM Tris-HCl, 192 mM Glycine, 20 %
	Methanol
Tris-buffered saline with Tween-20 (TBS-	10 mM Tris-HCl, 150 nM NaCl, 0.5 %
T)	Tween-20, pH 8.0

Supplemental Table 3: Genotyping primers

Primer	Sequence $(5' \rightarrow 3')$
<i>Tbc1d1-</i> WT	Fwd: GGACAAGCAGCTTTCTTGTTT
	Rev: TCCTGGTCCAGAAGCGAG
<i>Tbc1d1-</i> KO	Fwd: CAACATTCTGAAGGCCTTCTG
	Rev: TCCCTGGCTACAAGCTGAGT
Tbc1d4	Fwd: AGTAGACTCAGAGTGGTCTTGG
<i>Tbc1d4-</i> WT	Rev: GTCTTCCGACTCCATATTTGC
<i>Tbc1d4</i> -KO	Rev: GCAGCGCATCGCCTTCTATC
<i>Cd36</i>	Fwd: AGCTCATACATTGCTGTTTATGCATG
<i>Cd36</i> -NEO	Fwd: GGTACAATCACAGTGTTTTCTACGTGG
<i>Cd36</i>	Rev: CCGCTTCCTCGTGCTTTACGGTATC

Supplemental Table 4: siRNA oligonucleotide sequences

All siRNA oligonucleotides utilized in this study were purchased from Dharmacon (now: Horizon). The sequence and ordering information are listed in the following table.

Designation	Sequence $(5' \rightarrow 3')$	Ordering Number
siCd36	GAAAGGAUAACAUAAGCAAUU	D-062017-01
siFatp1	UGACGGUGGUACUGCGCAA	J-061607-09
siFatp4	AGACCAAGGUGCGACGGUA	J-063631-09
siNT	UAGCGACUAAACACAUCAAUU	D-001210-01
siRab10	GGGCAAAGACCUGCGUCCUU	J-040862-12
siRab14	GGUGUUGAAUUUGGUACAA	J-040866-09
siRab28	GAGCAUAUGCGAACAGUAA	J-040871-11
siRab8a	CAGGAGCGGUUUCGAACAA	J-040860-09
siRab8b	CGAACAAUUACGACAGCAU	J-055301-10
siTbc1d1	GAUCAGAGGUCAUAUUUAAUU	D-040360-01
siTbc1d4	AAGCUAUACACCAGCAAAU	J-040174-05

Supplemental Table 5: Radiochemicals

Compound	Concentration [mCi/ml]	Specific activity [Ci/mmol]	Supplier
[1- ¹⁴ C]-Palmitic	0.1	0.056	Hartmann Analytic,
Acid	0.1	0.030	Braunschweig, Germany
$[0, 10, 3 \mathbf{H}(\mathbf{N})] Olaio$			American Radiolabeled
	5	60	Chemicals,
Acid			St. Louis MO, USA
n [2 2 311] Duturio			American Radiolabeled
II-[2.3-°H]-Dutylic	1	120	Chemicals,
Acia			St. Louis MO, USA
[9,10- ³ H(N)]-	1	50	Hartmann Analytic,
Palmitate		50	Braunschweig, Germany

Supplemental Table 6: Antibodies

Name	Host Species	Supplier	Ordering #	Dilution used in TBS-T
FAT/CD36	Rabbit	Sigma-Aldrich	HPA002018	1:1000 + 5 % BSA
FATP4	Rabbit	Abcam	ab200353	1:1000 + 5 % milk
				powder
PDK4	Rabbit	Abcam	ab214938	1:1000 + 5 % milk
				powder
RAB10	Rabbit	Cell Signaling	#4262	1:1000 + 5 % milk
				powder
RAB8a	Mouse	BD	610845	1:2000 + 5 % milk
		Biosciences		powder
TBC1D1	Rabbit	Cell Signaling	#4629	1:1000 + 5 % milk
				powder
GAPDH	Rabbit	Cell Signaling	#2118	1:1000 + 5 % BSA
Anti-Rabbit-	Goat	Dianova	111-035-	
HRP			003	1.10 000. 1.20 000
Anti-Mouse-	Rabbit	Dianova	315-035-	1.10,000, 1.20,000
HRP			008	

Supplemental Table 7: qRT-PCR primers

All qRT-PCR primers used throughout this study were designed using the NCBI primer blast online tool and purchased from Eurogentec.

Target gene	Primer sequences $(5' \rightarrow 3')$	Product length	
Acadl	Fwd: ATTGCTGAGTTGGCGATTTC	112 hn	
	Rev: GCTGCACCGTCTGTATGTGT	112 Up	
C 126	Fwd: CCTAGTAGGCGTGGGTCTGA	00 hn	
Caso	Rev: ACGGGGTCTCAACCATTCATC	99 Op	
Cntla	Fwd: CTCAGTGGGAGCGACTCTTCA	102 hp	
CptIa	Rev: GGCCTCTGTGGTACACGACAA	105 bp	
Cpt1b	Fwd: CAGCGCTTTGGGAACCACAT	105 hr	
	Rev: CACTGCCTCAAGAGCTGTTCTC	105 bp	

Target gene	Primer sequences $(5' \rightarrow 3')$	Product length
Eabra 2	Fwd: ACCTGGAAGCTAGTGGACAG	106 hr
Габрэ	Rev: TGATGGTAGTAGGCTTGGTCAT	100 bp
Eh.a. A	Fwd: TGAAATCACCGCAGACGACA	141 h.c
Габр4	Rev: ACACATTCCACCACCAGCTT	141 bp
F 1.1	Fwd: CTCGTGATCGACCGGAAGG	1141
Faasi	Rev: TGCCACAAAAGGATCCGTGG	114 bp
E 10	Fwd: GCCCCTTGAGTATGGCAAGA	00.1
Fads2	Rev: TACATAGGGATGAGCAGCGG	99 bp
Г	Fwd: TTGCTGGCACTACAGAATGC	1001
Fasn	Rev: AACAGCCTCAGAGCGACAAT	192 бр
77 11	Fwd: GAGGCGATGCGTCTAAGGAA	1001
Hadh	Rev: TCCATTTCATGCCACCCGTC	136 bp
11.01	Fwd: CAAGATCTCGGCGAAGCAA	1101
Hıfla	Rev: GGTGAGCCTCATAACAGAAGCTTT	113 bp
	Fwd: GGAGCTCCAGTCGGAAGAGG	0.01
Lipe	Rev: GTCTTCTGCGAGTGTCACCA	98 bp
	Fwd: CAGCTGGGCCTAACTTTGAG	• • • • •
Lpl	Rev: AATCACACGGATGGCTTCTC	206 bp
	Fwd: CCTTTGGCTGGTTTTGGTTA	
Pdk4	Rev: CCTGCTTGGGATACACCAGT	225 bp
	Fwd: ACCGAGTTCGCCAAGAACAT	
Ppard	Rev: AGCCCGTCTTTGTTGACGAT	128 bp
	Fwd: CGGGCTGAGAAGTCACGTT	
Pparg	Rev: TGCGAGTGGTCTTCCATCAC	200 bp
	Fwd: GAGTCTGAAAGGGCCAAACA	
Ppargcla	Rev: TGCATTCCTCAATTTCACCA	148 bp
	Fwd: CGGACGATGCCTTCAATACC	
Rab10	Rev: AGGAGGTTGTGATGGTGTGA	144 bp
	Fwd: CAGGTCATCATCATCGGCTC	
Rab12	Rev: ATTTTAAAGTCAACACCCACGG	113 bp
	Fwd: GTTCAGAGCGGTTACACGGA	
Rab14	Rev: TCCTTGCGTCTGTCAACCAG	116 bp
	Fwd: GCACAGGGAATCCTCTTGGT	
Rab28	Rev: TAAAGCAACCAGGGGCTGAG	123 bp
	Fwd: CCAGTGCAAAGGCCAACATC	
Rab8a	Rev: CTGGTCCTCTTCTGCTGCTC	151 bp
D 1 01	Fwd: AGGAAAATGAACGACAGCAAT	10.11
Rab8b	Rev: CATCAAAGCAGAGAACAGCG	104 bp
a 19 - 1	Fwd: TGCTTTGGTTTCTGGGACTT	
Scl27a1	Rev: CCGAACACGAATCAGAACAG	149 bp
Scl27a4	Fwd: ACTGTTCTCCAAGCTAGTGCT	10.11
	Rev: GATGAAGACCCGGATGAAACG	106 bp
Sirt1	Fwd: GCTGACGACTTCGACGACG	1011
	Rev: TCGGTCAACAGGAGGTTGTCT	101 bp
<u> </u>	Fwd: GCCTGGGTTCCCAAAAGGAG	1451
Sirt2	Rev: GAGCGGAAGTCAGGGATACC	145 bp
<u> </u>	Fwd: ATCCCGGACTTCAGATCCCC	12(1
Sirt3	Rev: CAACATGAAAAAGGGCTTGGG	126 bp

Target gene	Primer sequences $(5' \rightarrow 3')$	Product length	
T_{1-1}^{1-1}	Fwd: ACAGTGTGGGGAAAAGATGCT	143 bp	
100101	Rev: AGGTGGAACTGCTCAGCTAG		
Thal 14	Fwd: CCAACAGTCTTGCCTCAGAG	146 hm	
100104	Rev: GAATGTGTGAGCCCGTCTTC	140 Up	
	Fwd: GCGGCACTGCCCATTTATTT	236 bp	
IBP	Rev: GGCGGAATGTATCTGGCACA		
Tham	Fwd: GGGAATGTGGAGCGTGCTAA	06 hm	
Ifam	Rev: CAGACAAGACTGATAGACGAGGG	90 op	
Hom?	Fwd: GTCTGCCTCATCAGGGTGTT	204 hz	
0005	Rev: CCTGGTCCTTACCATGCAGT	204 op	
β-Actin	Fwd: CCACCATGTACCCAGGCATT	2521	
	Rev: AGGGTGTAAAACGCAGCTCA	235 UP	

Supplemental Table 8: Fatty acid reference standard for gas chromatography.

Trivial name	Carboxyl-	double bond reference	ω-reference
	reference	(Δ^{x})	
Mystiric acid	C14:0		
Pentadecanoic acid	C15:0		
Palmitic acid	C16:0		
Palmitoleic acid	C16:1	$cis-\Delta^9$	ω-7
Stearic acid	C18:0		
Oleic acid	C18:1	$cis-\Delta^9$	ω-9
Linoleic acid	C18:2	cis,cis- $\Delta^{9, 12}$	ω-6
α-Linolenic acid	C18:3	cis,cis,cis- $\Delta^{9, 12, 15}$	ω-3
Arachidonic acid	C20:4	cis,cis,cis,cis- $\Delta^{5, 8, 11, 14}$	ω-6