Relationship between diabetic retinopathy stages and risk of major lower-extremity arterial disease in patients with type 2 diabetes

Ninon Foussard, Pierre-Jean Saulnier, Louis Potier, Stéphanie Ragot, Fabrice Schneider, Elise
Gand, Marie Monlun, Laurence Baillet-Blanco, Gilberto Velho, Michel Marre, Ronan
Roussel, Vincent Rigalleau, Kamel Mohammedi, Samy Hadjadj
On behalf of the SURDIAGENE Study Group

Supplementary material

Supplemental Table 1. Characteristics of participants according to diabetic retinopathy stages at baseline

Supplemental Table 2. Primary outcome by diabetic retinopathy stages (using an alternative definition) at baseline

Supplemental Table 3. Risks for minor and major lower-limb amputations by diabetic retinopathy stages at baseline

Supplemental Table 1. Characteristics of participants according to diabetic retinopathy stages at baseline

		Diabetic retinopathy				
	Absent	Non-proliferative	Proliferative	P		
N	762 (58)	475 (36)	83 (6)			
Clinical parameters						
Female	334 (44)	210 (44)	36(43)	0.98		
Age (years)	64±11	66±10 ^a	64±9	0.02		
Duration of diabetes (years)	11±9	18±10 ^a	18±11ª	< 0.0001		
Body mass index (kg/m²)	32±6	31±6 ^a	32±6	0.08		
Heart rate (beats per minute)	70±14	71±14	74±14	0.06		
Systolic blood pressure (mmHg)	130±16	134±19 ^a	138±19 ^a	< 0.0001		
Diastolic blood pressure (mmHg)	72±11	72±12	76±11 ^{a,b}	0.02		
Biological parameters						
HbA1c (%)	7.6±1.5	8.1±1.5 ^a	8.2±1.8 ^a	<0.0001		
HbA1c (mmol/mol)	59±17	65±16 ^a	66±20ª	<0.0001		
Urinary ACR (mg/mmol)	2 (1, 7)	5 (1, 21) ^a	27 (3, 117) ^{a,b}	< 0.0001		
eGFR (ml/min/1.73m ²)	77±22	70±26 ^a	65±28 ^{a,b}	< 0.0001		
Total cholesterol (mg/dl)	184±43	187±48	190±44	0.35		
HDL cholesterol (mg/dl)	47±16	46±15	51±16	0.09		
LDL cholesterol (mg/dl)	103±34	109±42a	112±40ª	0.01		
Triglycerides (mg/dl)	142 (101, 208)	134 (93, 200) ^a	121 (101, 185)	0.04		
Medical history						
Diabetic macular oedema	0	93 (20)	42 (51)	< 0.0001		
Diabetic kidney disease	201 (26)	194 (41)	54 (65)	< 0.0001		

Tabaco smoking					
Never	391 (51)	267 (56)	45 (54)	0.40	
Former	282 (37)	165 (35)	31 (37)		
Current	89 (12)	43 (9)	7 (8)		
Number of cigarette packs per year	25 (10,40)	24 (10,40)	25 (10,37)	0.78	
Macrovascular disease	244 (32)	174 (37)	33 (40)	0.13	
History of treatment use					
Antihypertensive drugs	613 (80)	397 (84)	68 (82)	0.38	
Statin	340 (45)	205 (43)	40 (48)	0.67	
Fibrate	102 (13)	52 (11)	3 (4)	0.02	
Antiplatelet or anticoagulant drugs	289 (38)	200 (42)	37 (45)	0.23	
Metformin	407 (53)	212 (45)	28 (34)	0.0002	
Insulin therapy	369 (48)	358 (75)	59 (71)	< 0.0001	

Data presented as numbers (%), mean±SD, or median (25th, 75th percentiles) for variables with skewed distribution (urinary albumin-to-creatinine ratio (ACR), triglycerides and number of cigarette packs per year). Comparisons of qualitative and quantitative parameters were performed using Chi-square and ANOVA tests, respectively. Tukey Kramer HSD test was performed following ANOVA to detect significant difference between subjects with absent (a) or non-proliferative retinopathy (b). Kruskal–Wallis test was used for comparisons of variables with skewed distribution. Analyses performed in participants without a baseline history of lower-extremity arterial disease. P<0.05 was considered as significant.

Supplemental Table 2. Primary outcome by diabetic retinopathy stages at baseline using an alternative definition*

			Ma	jor LEAD			
		No, n	Yes, n (%)	Incidence rate (95% CI) (per 1000 person-years)	HR (95% CI)	P	
Diabetic	Absent	731	31 (4.1)	5.5 (3.9 – 7.8)	Reference		
retinopathy	Simple	343	38 (10.0)	13.5 (9.8 – 18.6)	2.28 (1.37 – 3.82)	0.001	
stages at baseline	Severe	152	25 (14.1)	19.7 (13.2 – 29.4)	2.74 (1.49 – 4.99)	0.001	

Hazard ratios (HR), with 95% confidence interval (CI), estimated using Cox proportional hazards regression model, for major lower-extremity arterial disease by retinopathy stages*: absent (reference), simple (mild or moderate non proliferative) and severe (severe non-proliferative or proliferative). Analyses adjusted for age, sex, duration of diabetes, BMI, systolic blood pressure, estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, plasma concentrations of HDL and LDL-cholesterol, history of tabacco smoking (never, former, current), history of macrovascular disease, and use of antihypertensive, statin, metformin, and insulin therapies. Analyses performed in participants without a baseline history of lower-extremity arterial disease. P<0.05 was significant.

Supplemental Table 3. Risks for minor and major lower-limb amputations by diabetic retinopathy stages at baseline

		Minor amputation				Major amputation			
		during follow-up				during	follow-up		
		No, n	Yes, n (%)	HR (95% CI)	P	No, n	Yes, n (%)	HR (95% CI)	P
	Absent	782	5 (0.6)	Reference		782	6 (0.8)	Reference	
Diabetic	Non- proliferative	465	13 (2.7)	3.63 (1.25 – 12.09)	0.02	465	19 (3.9)	5.61 (2.09 – 17.85)	0.0004
retinopathy stages at	Proliferative	76	5 (6.2)	13.57 (3.31 – 56.13)	0.0005	76	4 (5.0)	6.73 (1.28 – 30.19)	0.03
baseline	Non- proliferative or proliferative	541	18 (3.2)	4.48 (1.63 – 14.48)	0.003	541	23 (4.1)	5.72 (2.16 – 18.06)	0.0003

Hazard ratios (HR), with 95% confidence interval (CI), estimated using Cox proportional hazards regression models, for minor and major lower-limb amputations in participants with non-proliferative, proliferative or any retinopathy versus those with no history of retinopathy at baseline (reference). Analyses adjusted for age, sex, duration of diabetes, BMI, systolic blood pressure, estimated glomerular filtration rate, urinary albumin-to-creatinine ratio, HDL and LDL-cholesterol, history of tobacco smoking (never, former, current), history of macrovascular disease,

and use of antihypertensive, statin, metformin and insulin therapies. Analyses performed in participants without a history of lower-limb amputation at baseline. P<0.05 was significant.