Supplementary Figure S1. LncRNA/mRNA co-expression network. The network represents the co-expression correlations between 7 upregulated lncRNAs and mRNAs (Pearson correlation coefficient \geq 0.99). Diamonds indicate lncRNAs and circles indicate mRNA transcripts. Solid lines indicate positive correlations, and dashed lines indicate negative correlations.

Supplementary Figure S2. Relative expression of Inc-URIDS in serum of T2DM patients with or without diabetic foot ulcers. RNA expression levels of Inc-URIDS in serum of T2DM patients with different Wagner grades were analyzed by real-time PCR. Data were log transformed before statistical analysis. Data were represented as mean \pm SD (n = 5-6). *P < 0.001.

Supplementary Figure S3. The non-coding nature of Inc-URIDS. (A) Putative protein possibly encoded by Inc-URIDS were predicted using ORF Finder. (B) The RNA sequence of Inc-URIDS was put into the Coding Potential Calculator (CPC) program, and was predicted to be non-coding RNAs.

А

Label	Strand +	Frame	Start	Stop	Length (nt aa)
ORF1	+	1	268	399	132 43
ORF4	+	3	543	665	123 40
ORF3	+	2	1394	>1495	102 33
ORF5	+	3	1152	1235	84 27
ORF2	+	1	844	921	78 25
ORF8	÷	3	292	35	258 85
ORF6	-	2	1292	1197	96 31
ORF7	-	2	890	798	93 30

В

ID	C/NC	CODING POTENTIAL SCORE	EVIDENCE	UTR-DB HITs	RNA-DB HITs
MRAK052872	noncoding	-1.04382	detail	search	search

Supplementary Figure S4. Identification of human homologous sequences of lnc-URIDS. (A and B) Searching for human homologous sequences using the NCBI-BLAST (A) and UCSC-BLAT (B). (C) Full length of human homologous sequences of lnc-URIDS in human fibroblasts was performed by RACE. (D) Multiple sequence alignment of lnc-URIDS and its human homologous sequence.

					Description	1						Max Score	Total Score	Query Cover	E value	Per. Ident	Access
🖌 Н	uman DNA	sequence from c	lone RP11-212B22	on chromoso	me Xq21.2-7	22.2, compl	ete sequen	ce				448	448	56%	1e-122	76.85%	AL39182
Huma Sequery Range Score 448 b Query Sbjct Query Sbjct	an DNA s nce ID: AL3 e 1: 53928 bits(242) 604 : 54772 663 : 54715	Expect 1e-122 THECTRATIST Expect 1e-122 THECTRATIST THECTRATIST	Ilone RP11-212E	Gaps 44/86- GTGGCTTCATC GTGGCTTCATC GTGGCTTCATC GTGGCTTCATC GTGCTCTGCT CTACCTCTGCCT	4(5%) 4(5%) CTTACTACTCT 11 11 111 CTCCCT-CTC- TTTCTCTTGT/ TCTCTCTTAT/	Strand Plus/Minu rCTCTTGT-T III III I -CTC-TGTCT AAG-ATAGTT AAGGACACTT	2, comple	vious Match Query Sbjct Query Sbjct Query Sbjct	1006 54366 1066 54306 1123 54250	ATAGACAA ATGGATGG -Gaaaaaa TGAAAAAA ATGAAGCC 	AAAGACTAT ACAGGCTAT ATAATCGAT 	TCTAAAT TCTAAAT CACAACTI CCCAACTI ATATCTTI ATGCCTTI	TTTGGTT IIIIIII TTTGGTT CTACT IIIII CTGTGCT CTATCAT IIIII CTATGGT	AATACTT GATACTT CTGGTGT/ CTGATGT/ GCATAAT(TCACAGT(TCGCCACT IIIII TTGCTACT ATCTCTT(ATCTCTTCTT(ATCTCTTCTT(ATCTCTTCTT(ATCTCTTCTTCTT(ATCTCTTCTTCTTCTTCTT(ATCTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT	TGTAACCA TATGGGCA CTGCCCCC CTGCCCC- CAAAACTA AAAACTA	ATGAGCT ATTAACT tttttt TTTT CCTCTGA
Query Sbjct Query Sbjct Query Sbjct	720 54655 771 54598 831 54541	-TTGAT GTGACGGGACTTAG CATTTAATTACAAC CTTAATTATAC AATTAGCACATAAA GAGTAGGAT-AT	GACCCGTTCAGATTAT AGGCCCATCCAGATTAC TTCACATACCTGTCTA TGAAAGGACCTTTTTT ATGAACAT-GTCTTT TGAATATCTTTTTGG	CTGTTATAAC/ .CCATGATAA LACAGAATAAG(TTTGGATTTT -TTCCCTTATT STAATATCACA III IIIIII STACTATCACA FAATTCAGC-(IIIIII CCATGCAGCT(TCAGAGCCTA TCCAAG-ATT AGGATCTTGG AGGTTCCAGG CACTACAATA CACTACACTA	770 54599 830 54542 885 54485	Query Sbjct Query Sbjct Query Sbjct	1183 54190 1243 54130 1303 54070	TACAGAAGG TACAGAAGG GGTAAAAGG III IIII GGTGAAAGG CTTAAAGAA CCTGAAGAA	SGTTCTTTA SGTTCTTTA CAAAGACTG IIIIIIIII CAAAGACTG AATAGTTCA	CAAACTT III III CAAGCTT TGTTGAA IIIII CTTTGAA AGTAGCA IIII CTT-GCA	CCTTTAG ATTTTAC TGGGTAT IIIIIII TGGGTAT STAAAAC III III STAGAAC	ATATTTT ATACCGT TGAGGGA TGAGGGA TGAGGGA TGTCAAT III II TGTGGAT	SAATCCC SAATCCC SATTGTG SATTGTG SATTGTG TTGTGCTA	TCAGCTGA IIIIII TCACCTAA TCCATAGC IIIIIII TCCATACC ATCATTTC IIIIIII STCATTTC	AGGGAGA AGGGAGA AAGCCAC IIIIIII AAGCCAC ACCTTGG IIIIII ACCTTGG
Query Sbjct Query Sbjct	886 54484 946 54426	GTCATTGCATATAT. TTCATTGCACAC AATTTAAGGTTGTT. GATCGAAGTTTGTC	AAATGTACTTTATACT	TTTTAAAATGO	CATCCTTGGTC	SCTCAAGCCA SCTCAAACCA ITTGTTACTAA CTGTTGTTAA	945 54427 1005 54367	Query Sbjct Query Sbjct	1363 54011 1423 53951	ААТАААСА ААТАААСАС Т-ААТС АТС ТТАСТТАТ	CCTGTATTT CCTATCTCT CCAATAAAG TCAATAAAG	GCGCCGG AAGCAGG CTTAGAT TTAAGAT	ACCAATA ACCAAGA 1442 53928	ATGACTTO	SCAGTCT(SCAATCT)	TGTATAA	TGCCTAC
	A	TIONS	QUERY	SCORE	START	END Q	SIZE	IDENTI	TY (HROM	STRAN	D ST	TART		END	SF	AN
			s YourSeq	370	214	1403	1497	85.	2% (hrX	+	97603	3751	9766	04944	11	.94
	Alignm	ent of YourSeq	and chrX:9760	03751-9760 te alignment. Ma)4944 tching bases in (cDNA and gen	omic sequenc	es are colored	blue and ci	pitalized. Ligh	t blue bases :	nark the bo	undaries of	f gaps in eit	ber sequen	ce (often spl	ice sites).
	Alignm Click on lin	ent of YourSeq ks in the frame to the h Seq	and chrX:9760	03751-9760 te alignment. Ma)4944 tching bases in Genomic	cDNA and gen	omic sequenc	es are colored	blue and c	pitalized. Ligh	t blue bases r	nark the bo	undaries of	f gaps in eit	her sequen	ce (often spl	ice sites).

Supplementary Figure S5. Validation of the differentially expressed genes in microarray

assay. The mRNA levels of differentially expressed genes that were enriched in wound healing biological process term in microarray assay were examined by real-time PCR. Data were log transformed before statistical analysis. Data were represented as mean \pm SD (n = 4). **P* < 0.05 and ***P* < 0.01.

Supplementary Figure S6. Overexpression of Inc-URIDS showed no effect on the mRNA levels of Plod1. Real-time PCR analysis of Inc-URIDS (A) and Plod1 (B) expression in dermal fibroblasts after overexpression of Inc-URIDS by adenovirus. Data were represented as mean \pm SD (n = 3). **P* < 0.05, ns: not significant.

Supplementary Figure S7. Lnc-URIDS negatively regulates the protein expression of Plod1

in skin wound. (A) IHC of Plod1 in skin tissues from normal wound and diabetic wound. The quantitative analysis of Plod1 was performed according to the immunoreactive score. (B) Western blot analysis of Plod1 in skin tissues from normal wound and diabetic wound. (C) Real-time PCR analysis of Plod1 mRNA expression in skin tissues from normal wound and diabetic wound. Data were represented as mean \pm SD (n = 4-6). **P* < 0.05 and ***P* < 0.01.

Supplemental Tables

Supplementary Table 1. Sequence of primers
--

Name	Sequence of primers(5'-3')	
Real time-PCR	Forward	Reverse
ACTB	CGAGTACAACCTTCTTGCAGC	ACCCATACCCACCATCACAC
Inc-URIDS	CTCTACTCTGGTGTATCTCTTCTGC	TCCCTCAATACCCATTCAACAC
Plod1	ACGGCTCCTGATTGAGCAAA	CGTAGTACCCATCCGCACTC
RACE	Outer PCR	Inner PCR
3'RACE	TAAGGTTGTTATTAAAAGCTAC	CAACTCTACTCTGGTGTATCTC
5'RACE	CAGGAAAAGATGGAAAGAATGGA	CCTCTGTGTTTGTGGGGAATATGT

Supponentary fusic 2. finitioules used					
Name of Antibody	Manufacturer, Catalog No	Dilution Used			
Anti-Collagen I Rabbit pAb	Servicebio, GB11022-2	1:2000			
Anti-Collagen III Rabbit pAb	Servicebio, GB111323	1:2000			
PLOD1 Polyclonal Antibody	Thermo Fisher Scientific, PA5-61892	1:2000			
ACTB Antibody	Affinity, AF7018	1:2000			
Goat Anti-Rabbit IgG (H+L) HRP	Affinity, S0001	1:5000			
Goat Anti-Mouse IgG (H+L) HRP	Affinity, S0002	1:5000			

Supplementary Table 2. Antibodies used

		Wagne	r grade		
	0 (n=5)	II (n=6)	III (n=6)	IV (n=6)	P
Gender (Male)	4 (80%)	5 (83.33%)	3 (50%)	5 (83.33%)	0.488
Age (year)	59 ± 7	65 ± 19	67 ± 13	65 ± 12	0.814
FBG (mmol/L)	6.0 ± 2.6	6.6 ± 2.1	9.9 ± 3.6	7.0 ± 4.5	0.362
HbA1c (%)	9.7 ± 3.1	$8.1~\pm~1.8$	$8.8~\pm~2.5$	$8.8~\pm~3.0$	0.798
HbA1c(mmol/mol)	83 ± 34	65 ± 20	72 ± 28	72 ± 33	0.798
SBP (mmHg)	126 ± 16	130 ± 26	122 ± 24	126 ± 31	0.656
DBP (mmHg)	78 ± 6	$70~\pm~6$	71 ± 10	69 ± 14	0.967
TC (mmol/L)	$4.8~\pm~2.5$	3.6 ± 0.5	3.5 ± 0.8	3.4 ± 1.0	0.333
TG (mmol/L)	1.1 (0.9, 2.5)	0.9 (0.6, 1.7)	0.9 (0.8, 1.6)	1.0 (1.0, 1.6)	0.022
LDL-C (mmol/L)	2.8 ± 1.4	2.2 ± 0.4	2.3 ± 0.7	2.3 ± 0.7	0.268
HDL-C (mmol/L)	$0.9~\pm~0.4$	1.0 ± 0.2	$0.8~\pm~0.2$	$0.6~\pm~0.3$	0.647
CRE (µmol/L)	93 ± 29	136 ± 73	83 ± 22	$218~\pm~119$	0.862
RBC (×10 ¹² /L)	$4.2~\pm~3.7$	3.6 ± 0.9	3.7 ± 0.8	3.2 ± 0.7	0.138
WBC (×10 ⁹ /L)	8.5 ± 2.5	7.8± 1.6	$9.8~\pm~2.9$	$11.2~\pm~5.6$	0.156
PLT (×10 ⁹ /L)	$321~\pm~162$	$279~\pm~99$	373 ± 122	416 ± 144	0.389
HGB (g/L)	126 ± 15	107 ± 22	100 ± 23	81 ± 17	0.011

Supplementary Table 3. Demographic and clinical characteristics of T2DM patients with different Wagner grades

Continuous variables are presented as mean ± SD for parametric variables and median (interquartile range) for nonparametric variables. Categorical variables are presented as numbers (proportions). FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; LDL-C, lowdensity lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CRE, creatinine; RBC, red blood cell; WBC, white blood cell; PLT, blood platelet; HGB, hemoglobin.

	Absolute Fold				
SeqID	change ([Test]	source	chromosome	strand	relationship
	vs [Ctrl])				
MRAK032934	2.043212031	mouse_ortholog	chr10	-	antisense
MRAK051933	2.264423067	mouse_ortholog	chr13	-	intergenic
MRAK052872	2.309756272	mouse_ortholog	chrX	+	intergenic
MRAK080592	2.752328174	mouse_ortholog	chr7	-	intergenic
uc.309-	3.78374103	UCR	chr1	-	antisense
uc.334-	2.223166345	UCR	chr8	+	antisense
uc.436-	2.993645207	UCR	chr18	+	intergenic

Supplementary Table 4. Criteria of preliminary screening and characterization of 7 upregulated lncRNAs

Criteria:

Abundance: Average microarray raw intensity > 50 in NDM group;

Length: 200 nt < lncRNA length < 5000 nt;

Coding capability: ORF Finder < 100 amino acids and coding potential score < 0;

Relationship of lncRNA and its nearby coding gene: antisense/intergenic;

Conservation: Human homologous.

LncRNA	Term	P-value	Gene Counts
MRAK032934	wound healing	0.069	3
MRAK051933	wound healing	/	/
MRAK052872	wound healing	0.021	5
MRAK080592	wound healing	/	/
uc.309-	wound healing	/	/
uc.334-	wound healing	/	/
uc.436-	wound healing	/	/

Supplementary Table 5. GO biological process enrichment analysis of the mRNAs coexpressed with 7 lncRNAs