Online-Only Supplemental Material

Replacement of red and processed meat with other food sources of protein and the risk of type 2 diabetes in European populations; the EPIC-InterAct study

Daniel B. Ibsen^{1,2}, Marinka Steur², Fumiaki Imamura², Kim Overvad^{1,3}, Matthias B. Schulze^{4,5,6}, Benedetta Bendinelli⁷, Marcela Guevara^{8,9,10}, Antonio Agudo¹¹, Pilar Amiano^{9,12,13}, Dagfinn Aune^{14,15,16}, Aurelio Barricarte⁸, Ulrika Ericson¹⁷, Guy Fagherazzi^{18,19}, Paul W. Franks²⁰, Heinz Freisling²¹, Jose R. Quiros²², Sara Grioni²³, Alicia Heath¹⁴, Inge Huybrechts²¹, Verena Katze²⁴, Nasser Laouali¹⁹, Francesca Mancini¹⁹, Giovanna Masala⁷, Anja Olsen^{1, 25}, Keren Papier²⁶, Stina Ramne¹⁷, Olov Rolandsson²⁷, Carlotta Sacerdote²⁸, Maria-José Sánchez^{9,29,30,31}, Carmen Santiuste^{9,32}, Vittorio Simeon³³, Annemieke M.W. Spijkerman³⁴, Bernard Srour²⁴, Anne Tjønneland^{25,35}, Tammy Y.N. Tong²⁶, Rosario Tumino^{36,37}, Yvonne van der Schouw³⁸, Elisabete Weiderpass²¹, Clemens Wittenbecher^{4,5,39}, Stephen J. Sharp², Elio Riboli⁴⁰, Nita G. Forouhi^{2*}, Nick J. Wareham^{2*}

¹Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark

²MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom ³Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark

- ⁴Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- ⁵German Center for Diabetes Research (DZD), Neuherberg, Germany

⁶ Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany

⁷Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy

⁸Navarre Public Health Institute, Pamplona, Spain

⁹CIBER de Epidemiología y Salud Pública (CIBERESP), Spain

¹⁰Navarra Institute for Health Research (IdiSNA), Pamplona, Spain

¹¹Unit of Nutrition and Cancer, Catalan Institute of Oncology - ICO, Nutrition and Cancer Group, Bellvitge

Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain

¹²Public Health Division of Gipuzkoa, San Sebastian, Spain

¹³Instituto BIO-Donostia, Basque Government, San Sebastian, Spain

¹⁴Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom

¹⁵Department of Nutrition, Bjørknes University College, Oslo, Norway

¹⁶Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Ullevål, Oslo, Norway

¹⁷Department of Clinical Sciences, Lund University, Malmö, Sweden

¹⁸Digital Epidemiology and e-Health Research Hub, Department of Population Health, Luxembourg Institute of Health, Luxembourg

¹⁹Center of Epidemiology and Population Health UMR 1018, Inserm, Paris South - Paris Saclay University,

Gustave Roussy Institute, Villejuif, France

²⁰Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

²¹International Agency for Research on Cancer, World Health Organization, Lyon, France

²²Public Health Directorate, Asturias, Spain

²³Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy

²⁴Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

²⁵Danish Cancer Society Research Center, Copenhagen, Denmark

²⁶Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom

²⁷Departement of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden

²⁸Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Torino, Italy

²⁹Escuela Andaluza de Salud Pública (EASP), Granada, Spain

³⁰Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain

³¹Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain

³²Department of Epidemiology, Murcia Regional Health Authority, IMIB-Arrixaca, Murcia, Spain

³³Department of Mental, Physical Health and Preventive Medicine, University "L.Vanvitelli", Naples, Italy

³⁴National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

³⁵Department of Public Health, University of Copenhagen, Copenhagen, Denmark

³⁶Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale (ASP), Ragusa, Italy

³⁷Associazone Iblea per la Ricerca Epidemiologica - Organizazione Non Lucrativa di Utilità Sociale (AIRE - ONLUS), Ragusa, Italy

³⁸Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands

³⁹Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA

⁴⁰School of Public Health, Imperial College London, United Kingdom

Correspondence to:

N. G. Forouhi, nita.forouhi@mrc-epid.cam.ac.uk; D. B. Ibsen, dbi@ph.au.dk

Country	Centres (where methods differed)*	Dietary questionnaire*	Administered*	Correlation coefficient for questionnaire vs twelve 24-h recalls*					*	
				Protein†	Protein	Meat	Fish	Dairy	Eggs	Cereals
					(biomarker)#			products		
France		Quantitative	Self	0.59 (F)‡	0.37	0.43	0.39	0.67	0.40	0.56
Italy				0.48 (F) /	0.31 / 0.19	0.38 /	0.47 /	0.66 /	0.23 /	0.51 /
				0.35 (M)		0.39	0.42	0.78	0.50	0.44
	Florence, Turin, Varese	Quantitative	Self							
	Ragusa	Quantitative	Face-to-face							
	Naples	Semi-quantitative	Face-to-face							
Spain		Quantitative	Face-to-face	0.51 (F) /	0.45 / 0.12	0.59 /	0.55 /	0.74 /	0.49 /	0.69 /
				0.58 (M)		0.44	0.42	0.77	0.36	0.72
United		Semi-quantitative	Self							
Kingdom										
	Oxford			0.66 (F)						
	Cambridge			0.43 (F)§,	0.49§					
Netherlands		Quantitative	Self	0.67 (F) /	0.54 / 0.40	0.70 /	0.38 /	0.77 /	0.43 /	0.68 /
				0.71 (M)		0.47	0.32	0.73	0.41	0.75
Germany		Quantitative	Self	0.54 (F) /	0.36 / 0.24	0.41 /	0.22 /	0.46 /	0.38 /	0.19 /
				0.47 (M)		0.63	0.41	0.54	0.40	0.39
Sweden				0.43 (F) /	0.07 / 0.27	0.42 /	0.24 /	0.67 /	0.64 /	0.53 /
				0.61 (M)		0.57	0.23	0.70	0.50	0.63
	Umeå	Semi-quantitative	Self							
	Malmö	Semi-quantitative	Self							
		and 14-day record								
		of hot meals								
Denmark		Semi-quantitative	Self	0.26 (F) /						
				0.52 (M)¶						

Supplemental Table S1–Dietary assessment methods used to estimate total protein and food sources of protein across countries/centres in the EPIC-InterAct case-cohort study and correlation coefficients reported for total protein and food sources of protein

F, female; M, male.

*From: Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. *Public health nutrition* 2002; **5**(6B): 1113-24.

[†]Validity coefficients in all centres except EPIC-Norfolk and Denmark represent Pearson correlation coefficients of total protein measured by dietary questionnaires versus twelve 24-h recalls (reference method), and were deattenuated and energy-adjusted. Values obtained from: Kaaks R, Slimani N, Riboli E. Pilot phase studies on the accuracy of dietary intake measurements in the EPIC project: overall evaluation of results. European Prospective Investigation into Cancer and Nutrition. *International journal of*

epidemiology 1997; 26 Suppl 1: S26-36., unless indicated otherwise.

Same gender for entire row following the same sequence.

\$Validity coefficients in the EPIC-Norfolk arm in the UK were estimated by Spearman correlation coefficients of total protein measured by dietary questionnaires versus 16day weighted records.

||Values obtained from: Bingham SA, Gill C, Welch A, et al. International journal of epidemiology 1997; 26 Suppl 1: S137-51.

¶Values obtained from Tjonneland A, Overvad K, Haraldsdottir J, Bang S, Ewertz M, Jensen OM. *International journal of epidemiology* 1991; **20**(4): 906-12. #Questionnaire vs. urinary nitrogen

Supplemental Table S2–Definition of individual food groups

roougroup	Included foods			
Red meat	Unprocessed beef, pork, veal, mutton, lamb, goat and			
	horse, hamburgers, meatballs and minced meat			
Processed meat	Bacon-, ham- and liver-containing foods and foods such as black pudding, chorizo, sausage and corned beef			
Poultry	Chicken, hen, turkey, duck, rabbit and goose			
Fish	Lean and fatty fish, fish products, fish roe, fish liver and shellfish			
Milk	Liquid dairy milks such skimmed, semi-skimmed, whole-fat types and buttermilk			
Yogurt	Yogurt and thick fermented milks (e.g. sour milk)			
Cheese	Hard and soft cheese			
Eggs	Whole eggs and egg from egg products			
Legumes	Red kidney beans, haricot beans, chickpeas, split peas and lentils			
Nuts	Tree nuts, peanuts*, seeds, coconut and chestnut			
Cereals	Bread, rice, pasta and other types of cereals [†]			

*Peanuts were included as nuts, although they botanically belong to legumes, because they are usually consumed as nuts. †We were not able to differentiate cereals into refined and whole grains in our

data material.

Replacement of red and	B-coefficient	P value for	HR (95% CI)
processed meat with	p-coefficient	attenuation of B	IIK (9570 CI)
Poultry		attenuation of p	
Model 2 (ref)	0 105		0.00(0.83, 0.07)
Model 2 (IEI)	-0.103	<0.001	0.90(0.83, 0.97) 0.04(0.87, 1.02)
Model 2 + leffittil Model 2 (ref)	-0.039	<0.001	0.94(0.87, 1.02) 0.02(0.85, 1.02)
Model 2 (Iei)	-0.071	0.002	0.95(0.63, 1.02)
Fich	-0.043	0.002	0.90 (0.87, 1.03)
FISH Model 2 (nef)	0.076		0.02 (0.97, 0.09)
Model 2 (IeI)	-0.070	<0.001	0.93(0.87, 0.98)
Model $2 + \text{lefftlin}$	-0.050	<0.001	0.97(0.91, 1.05)
Model 5 (ref)	-0.012	-0.001	0.99(0.92, 1.00)
Model 5 + Territin	0.014	<0.001	1.01 (0.95, 1.09)
Cheese Madal 2 (maf)	0 172		
Model 2 (rel)	-0.175	-0.001	0.84(0.80, 0.88)
Model $2 + 1 \text{erritin}$	-0.118	<0.001	0.89(0.85, 0.94)
Model 3 (ref)	-0.114	.0.001	0.89(0.85, 0.94)
Model 3 + ferritin	-0.078	<0.001	0.93 (0.88, 0.97)
Yogurt	0.000	0.001	
Model 2 (ref)	-0.209	<0.001	0.81 (0.78, 0.85)
Model 2 + ferritin	-0.162	0.004	0.85 (0.81, 0.89)
Model 3 (ref)	-0.108	< 0.001	0.90 (0.86, 0.94)
Model 3 + ferritin	-0.079		0.92 (0.88, 0.97)
Milk			
Model 2 (ref)	-0.139	< 0.001	0.87 (0.83, 0.91)
Model 2 + ferritin	-0.084		0.92 (0.88, 0.96)
Model 3 (ref)	-0.062	< 0.001	0.94 (0.89, 0.99)
Model 3 + ferritin	-0.032		0.97 (0.92, 1.02)
Eggs			
Model 2 (ref)	-0.002		1.00 (0.91, 1.09)
Model 2 + ferritin	0.038	0.02	1.04 (0.94, 1.14)
Model 3 (ref)	-0.047		0.95 (0.85, 1.07)
Model 3 + ferritin	-0.017	0.01	0.98 (0.88, 1.10)
Legumes			
Model 2 (ref)	-0.175		0.84 (0.78, 0.91)
Model 2 + ferritin	-0.125	0.006	0.88 (0.81, 0.96)
Model 3 (ref)	-0.051		0.95 (0.86, 1.04)
Model 3 + ferritin	-0.018	0.009	0.98 (0.90, 1.08)
Nuts			
Model 2 (ref)	-0.205		0.81 (0.77, 0.86)
Model 2 + ferritin	-0.141	< 0.001	0.87 (0.82, 0.92)
Model 3 (ref)	-0.156		0.86 (0.78, 0.94)
Model 3 + ferritin	-0.114	< 0.001	0.89 (0.82, 0.98)
Cereals			
Model 2 (ref)	-0.193		0.81 (0.77, 0.86)
Model 2 + ferritin	-0.143	< 0.001	0.87 (0.82, 0.91)
Model 3 (ref)	-0.089		0.92 (0.88, 0.95)
Model 3 + ferritin	-0.060	< 0.001	0.94 (0.90, 0.98)

Supplemental Table S3–Analysis comparing replacement models with and without adjustment for serum ferritin

Model 2 adjusted for: age (underlying timescale), sex, country, education, physical activity, smoking status, total energy intake, alcohol consumption, fruit, vegetables, sweets, soft drinks, coffee, tea and other dairy products. Model 3 further adjusted for body mass index (n total = 24,611, n cases = 10,769). Serving sizes were 50 g/day for red and processed meat, poultry, fish, eggs and legumes, 30 g/day for cheese and cereals and 10 g/day for nuts. P value is from a one-sided Wald test.

Supplemental Fig. S1–Flowchart of participants in the EPIC-InterAct case-cohort. *A random sample of 2055 type 2 diabetes cases from Denmark was included after the exclusion of 2577 cases. **n missing before exclusions.

1 25 (0 95, 1 65)

+ 1.99 (0.29, 13.82)

1.01 (0.86, 1.19)

Sweden

Denmark

Overall (I-squared = 29.9%, p = 0.189)

.6

.8

1 1.2 1.4 1.6 1.8

Sweden

Denmark

цк

Country

France

Italy

Spain

UK

Netherlands

Germany

Sweden

Denmark

0.89 (0.79, 0.99) 0.91 (0.82, 1.00) 0.90 (0.82, 1.00) Overall (I-squared = 0.0%, p = 0.912) 0.92 (0.88, 0.96)

Hazard Ratio (95% CI)

0.97 (0.71, 1.32)

0.98 (0.85, 1.13)

0.94 (0.87, 1.03)

0.87 (0.76, 0.99)

0.94 (0.77, 1.14)

.8 1 1.2 1.4 1.6 1.8

.6

Supplemental Fig. S2–The estimated effect of replacing red and processed meat with poultry, fish, cheese, yogurt, milk, eggs, legumes, nuts or cereals on the incidence of type 2 diabetes across eight European countries from the EPIC-InterAct study (n total = 26,460, n cases = 11,741). Hazard ratios and 95% confidence intervals (CIs) were adjusted for: age (underlying timescale), sex, centre, education, physical activity, smoking status, total energy intake, alcohol consumption, fruit, vegetables, sweets, soft drinks, coffee, tea, other dairy products and body mass index. Serving sizes were 200 g/day for milk, 70 g/day for yogurt, 50 g/day for red and processed meat, poultry, fish, eggs and legumes, 30 g/day for cheese and cereals and 10 g/day for nuts.

Supplemental Fig. S3–Replacement of red and/or processed red meat and hazard of type 2 diabetes. Country-specific estimates were combined using random effects meta-analysis. Model 1 adjusted for: age (underlying timescale), sex, centre, total energy intake, education, physical activity, smoking status and alcohol consumption. Model 2 further adjusted for fruit, vegetables, sweets, soft drinks, coffee, tea and other dairy products. Model 3 further adjusted for body mass index (n total = 26,460, n cases = 11,741). Serving sizes were 200 g/day for milk, 70 g/day for yogurt, 50 g/day for red and processed meat, poultry, fish, eggs and legumes, 30 g/day for cheese and cereals and 10 g/day for nuts.

Replacement of red and processed meat with fish by region

Supplemental Fig. S4–Stratified meta-analyses of replacements of red and processed meat with other food sources of protein and hazard of type 2 diabetes across eight European countries from the EPIC-InterAct Study. Stratified by European region based on a cut-point, including the Netherlands, above which was defined as the northern European region. Countries below the cut-point were defined as southern. All country-specific estimates were adjusted for: age (underlying timescale), sex, education, physical activity, smoking status, total energy intake, alcohol consumption, fruit, vegetables, sweets, soft drinks, coffee, tea, other dairy products and body mass index (n total = 26,460, n cases = 11,741). Serving sizes were 50 g/day for red and processed meat, poultry and fish.

Supplemental Fig. S5–Meta-analyses of replacements of red and processed meat with cereals stratified on high or low dietary fibre from cereals (low <8 g/day, n total = 9246, n cases = 3817; high \geq 8 g/day, n total = 7785, n cases = 3289) and hazard of type 2 diabetes across seven European countries from the EPIC-InterAct Study. All country-specific estimates were adjusted for: age (underlying timescale), sex, education, physical activity, smoking status, total energy intake, alcohol consumption fruit, vegetables, sweets, soft drinks, coffee, tea, other dairy products and body mass index. Serving sizes were 50 g/day for red and processed meat and 30 g/day for cereals. Denmark was not included because the models would not converge as the Danes in general had a higher intake of cereal fibre compared with the other countries.

Supplemental Fig. S6–Sensitivity analyses excluding participants with baseline prevalent diseases (n cancer = 887, myocardial infarction = 529, stroke = 227, angina = 370, hypertension = 6141, hyperlipidaemia = 2385; n total = 15,921, n cases = 5699); developed diabetes during the first 2 years of follow-up (n diabetes during first 2 years of follow-up = 997; n total = 25,463, n cases = 10,744); baseline HbA1c levels \geq 6.5% (n HbA1c levels \geq 6.5% = 2241; n total = 24,219, n cases = 9584); and regression calibration of FFQ intakes using 24h recall data from 2271 participants. Serving sizes were 50 g/day for red and processed meat, poultry, fish, eggs and legumes, 30 g/day for cheese and cereals and 10 g/day for nuts. Denmark not included for replacement of red and processed meat with legumes in the regression calibration analysis due to too low intakes.

Supplemental Fig. S7–Sensitivity analysis of the estimated association of replacing red and processed meat (per 5 g protein/day) with other food sources of protein and the incidence of type 2 diabetes in the EPIC-InterAct case-cohort study (n total = 26,460, n cases = 11,741). Country-specific estimates were obtained and combined using random effects meta-analysis. Adjusted for: age (underlying timescale), sex, centre, education, physical activity, smoking status, total energy intake, total protein, alcohol consumption, fruit, vegetables, sweets, soft drinks, coffee, tea, other dairy products and body mass index.