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Figure S1. A meta-analysis of microarray datasets. (A) Schematic representation of the workflow for the analysis of microarray datasets of MSC, EPC, and HUVEC. (B) Principal component analysis of microarray datasets depicting a significant differential expression profile among different cell types and datasets from the same cell types were grouped together. (C) Detailed tabulated summary of microarray datasets analysis and number of differentially expressed genes (DEGs) obtained along with their associated number of pathway hits using PANTHER.
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Figure S2. Profile of gene clusters with consistent increase or decrease mRNA expression levels. (A) Heatmap representing the differentially expressed genes identified based on their involvement in signaling pathways related to vascularization. (B) Self-organizing Map clustering showing the differential expression pattern of genes selected: Cluster 11, 16 and 21 depicted a consistent increase in genes expression from MSC, LEPC to HUVEC whereas Cluster 15, 20 and 25 depicted decrease in expression from MSC into mature endothelial cells.
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Figure S3. Gene interaction analysis. Interaction network summary of predicted associations for 72 up-regulated and down-regulated genes where network nodes are different proteins using string analysis. 
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Figure S4. ID1 promoter schematic and transient overexpression and silencing of TWIST1. (A) Schematic representation of the ID1 promoter region depicting putative binding sites of SMAD1/5/8 complex (CAGAC) upstream to transcription start site. (B) Strategy for generation of plasmid constructs cloned with different Smad-binding sites on the ID1 promoter region in pMCS-Green Renilla plasmid. (C) Increased expression of TWIST1 at mRNA level in iEC as compared to WJ-MSC during transdifferentiation (D) KDR, SFRP4 and TWIST1 at protein level depicting a differential expression during MSC transdifferentiation into iEC. (E) Representative images of flow cytometry analysis depicting a higher percent of iECs expressing KDR while WJ-MSCs expressing SFRP4. (F) Western blot analysis for confirmation of TWIST1 over-expression system with Flag tag and TWIST1 silencing system with GFP expression along with basal expression of TWIST1 in transfected MSCs. Overexpression of TWIST1 led to an increased KDR and decreased SFRP4 protein expression while TWIST1 silencing reversed this effect.
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Figure S5. Putative binding sites of TWIST1 on KDR and SFRP4 promoter. Schematic representation of two and four putative TWIST1 binding sequences on the (A) KDR and (C) SFRP4 promoter, respectively within 5 Kb upstream of transcription start site; Delineated strategy for deletion constructs of TWIST1 binding region on (B) KDR and (D) SFRP4 promoter by sequential deletion of each site. 
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Figure S6. TWIST1 transcriptionally regulates KDR and SFRP4 promoter activity. Promoter reporter luciferase assay depicting enhanced KDR promoter activity in (A) iEC (B) WJ-MSC transfected with Wt-Kdr and TWIST1 overexpression which was mitigated in presence of TWIST1 silencing. Sequential deletion of BS1 significantly decreased the promoter activity in iECs and WJ-MSCs, but with more prominently in the latter thereby suggesting a cell type-based differential regulation of KDR promoter activity via BS1 and BS2 binding sites. Similarly, promoter-reporter luciferase assay depicting decreased SFRP4 promoter activity in (C) iEC and (D) WJ-MSC transfected with Wt-Sfrp4 in presence of Twist1 overexpression. Sequential deletion of BS1 and BS2 further decreased the promoter activity whereas TWIST1 silencing did not revert the effect suggesting the role of other cofactors associated with SFRP4 transcriptional regulation along with TWIST1. p≤0.05, as compared to *Wt-KdrPr, #Wt-Kdr Pr+Twist1-DDK.
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Figure S7. TWIST1 binding on KDR and SFRP4 promoter. ChIP analysis depicting TWIST1 direct and efficient binding on (A) BS2 of KDR and (B) BS1 and BS2 of SFRP4 promoter which was further increased in the presence of TWIST1 overexpression. p≤0.05, as compared to *IgG Control.
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Figure S8. Stable Twist1 reprogrammed EC (rEC) generation. (A) Twist1 overexpression was confirmed by immunoblot analysis depicting a shift in the fused TWIST1 protein along with GFP (54 kDa) as compared with GFP (27 kDa) in vector control. (B) qPCR analysis of TWIST1 at mRNA level further revealed the efficacy of TWIST1 overexpression as well as silencing system in rEC at day 7 and 14. *p≤0.05, as compared with pLVX-AcGFP iEC-D7/D14. (C) Representative fluorescence images of GFP expressing EC transduced with pLVX-AcGFP iEC (vector control), pLVX-AcGFP-TWIST1 rEC, piLenti-Scr-shRNA-GFP iEC and/or piLenti-Twist1-shRNA-GFP iEC (negative control). (D) Representative images of the flow cytometry analysis depicted an increased and decreased expression of KDR and SFRP4, respectively in TWIST1 rECs which was reverted back in Twist1-shRNA iECs, negative control group.
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Figure S9. Twist1 overexpression potentiates WJ-MSC transdifferentiation towards endothelial lineage. (A) Representative confocal images of DiI Ac-LDL staining in WJ-MSC and trans-differentiated rEC at day 14 depicting enhanced uptake in pLVX-AcGFP-TWIST1 (rEC) transfected group as compared with pLVX-AcGFP iEC (vector control) group. This effect was suppressed in piLenti-TWIST1-shRNA iEC (negative control) indicating a positive role of TWIST1 in transdifferentiation of WJ-MSC into rEC. (B-C) qPCR analysis of endothelial-specific markers depicting TWIST1 reprogramming in iEC-D14 (TWIST1 rEC) resulted in increased mRNA expression of endothelial markers as compared with vector control group suggesting putative role of TWIST1 towards endothelial lineage transdifferentiation of WJ-MSC. *p≤0.05, as compared with pLVX-AcGFP iEC-D14.
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Figure S10. TWIST1 overexpression regulates vasculogenic genes, KDR and SFRP4 in iECs. Representative confocal images depicting a higher and lower co-immunostaining of (A) KDR with GFP and (B) SFRP4 with GFP, respectively in Twist1 rEC on day 14 which was reverted with TWIST1 silencing (negative control). 
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Figure S11.Twist1 overexpression regulates vasculogenesis-related physiological functions in iECs. (A) The proliferation capacity of Twist1 rEC at day 7 and day 14 was significantly decreased as compared with WJ-MSCs. (B) Boyden chamber assay depicting a significant increase in chemotactic migration in TWIST1 rEC at day 7 and day 14 that was perturbed in the presence of TWIST1 silencing as compared with WJ-MSC. (C) CAM assay, representative images (left panel) and graphs (right panel) depicting an enhanced number of blood vessels and total length of branches in TWIST1 rEC at day 14 as compared with WJ-MSC. p≤0.05, as compared to *WJ-MSC, #iEC, and $Scr-shRNA.
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Figure S12. Generation of full-excisional splinted wound healing model in Type 1 and Type 2 diabetic mice. Schematic representation of (A) murine streptozotocin-induced Type 1 diabetic and (B) Type 2 diabetic full excisional splint wound healing model generation.

[image: ]
Figure S13. Enhanced engraftment of TWIST1 rEC in regenerated type 1 diabetic wounds. (A) Representative confocal images and (B) quantitation of co-localization depicting increased engraftment and co-localization of TWIST1 rEC with GFP; (C) qPCR analysis revealing enhanced human-specific endothelial marker gene expression in regenerated skin tissue of diabetic mice suggesting direct incorporation of transplanted TWIST1 rEC. (D) Significant increase in mouse gene-specific endothelial markers suggesting enhanced neovascularization in regenerated wounds as compared with control and/or TWIST1 –knockdown iEC transplanted groups also occurring in a paracrine manner by the transplanted human TWIST1 rECs.#/*p≤0.05 as compared to the pLVX-AcGFP-iEC Tx group.
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Figure S14. TWIST1–mediated differential transcriptional regulation of KDR and SFRP4 expression in regenerated wound tissue of type 1 diabetic mice. Representative confocal immunofluorescence images and their quantification depicting higher co-localization of GFP and  (A & B) KDR expressing cells whereas decreased co-localization of  (C & D) GFP and SFRP4 at wound site in TWIST1 rEC transplanted group as compared with other iECs transplanted mice groups suggesting higher neovascularization and fate of transplanted cells at the regenerated wounds. #p≤0.05 as compared to the pLVX-AcGFP-iEC Tx group.
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Figure S15. Increased neovascularization by transplantation of the TWIST1 rEC transplanted group at the wound bed of type 1 diabetic wounds. Higher co-localization of GFP and human-specific CD31 (A) type 1 diabetic mice and (B) quantification of co-localization. Also, co-immunostaining of (C) CD31 along with α-SMA and (D) quantification of co-localization in type 1 diabetic mice, confirmed the fate of the transplanted TWIST1 rEC towards increased neovascularization at the wound site of the non-healing diabetic wounds. #/*p≤0.05 as compared to the pLVX-AcGFP-iEC Tx group.
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