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Figure S1. The quality control analyses of scRNA-seq data (related to Figure 1)

(A) Fasting blood glucose levels in male rats were monitored at 2 days, 1, 2, 4, 8, 12, 16,
and 20 weeks post citrate buffer (control rats) or STZ (STZ rats) injection. Mean + SD.
Unpaired t-test with Welch’s correction (two-tailed). **** P < 0.0001. N numbers are
indicated in the charts. (B) Summary of quality control metrics for each sample. (C) The
relationship between cluster number and cell type. (D) Markers employed for the
identification of major retinal cell types. (E) The top 5 differentially expressed genes for

each cluster.
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Figure S2. The number of cells captured in each cluster, and the enriched Gene
Ontology (GO) terms for rod, Miiller glial cells, and A17 amacrine cells at 2- or 3-
month post STZ injection (related Figure 1 and 2).

(A-B) The quantity of retinal cells in each cluster post quality control is depicted,
illustrating the total number of cells per cluster (A) and per cluster per condition (B). (C-
D) The top 20 enriched GO terms for upregulated DEGs in rod (cluster 1, C) or Muller
glial cells (cluster 4, D) at 2 months after STZ injection. (E-F) The top 20 enriched GO
terms for upregulated DEGs in A17 amacrine cells (cluster 16, E) or Miller glial cells

(cluster 4, F) at 3 months after STZ injection.



Figure S3

Gene Function Role Supplementary References
Stat3 anti- or proinflammatory dcggéi)ét(;n .| 68
Cebpd anti-apopt(_Jsis or Context- 9 10
pro-migration dependent ’
Chka oncogene Negligent 11
Plat activate microglia Negligent 12
(act as a cytokine)
Ctsc pro-inflammation Negligent | 13
Slc3a2 oncogene Negligent 14, 15
Ano6 oncogene Negligent | 16
Vav3 anti-survival Negligent | 17
Ptprn oncogene Negligent | 18
Plin2 pro-inflammation Negligent | 19
Rnf19b anti-inflammation Protective | 20
Lcn2 Neuroprotective Protective | 21
Dclk1 pro-survival Protective | 22, 23
Scg2 anti-angiogenesis Protective | 24, 25
Enox1 anti-apoptosis, anti- Protective | 26, 27
angiogenesis
Slc7a11 negrop_rote_ctlve, Protective | 28
anti oxidative stress
Ifrdl1 anti-inflammation, Protective | 29
anti-apoptosis
Qsox1 anti-inflammation Protective | 30
Zfp36 anti-inflammation Protective | 31
Cyp26a1 anti-apoptosis Protective | 32-34
Mt3 anti-oxidative stress Protective | 35, 36
Mt1 anti-oxidative stress Protective | 37
anti-oxidative stress,
Akap12 anti-inflammation, Protective | 38, 39
anti-angiogenesis
AABR07040864.1 | anti-apoptosis Protective | 40
Cited2 anti-inflammation Protective | 41
anti-oxidant, anti-
Mt2A apoptosis,detoxification, | Protective | 42
anti-proliferationanti-inflagmation
Mt1m anti-proliferation Protective | 43
Slc14a1 neuroprotective Protective | 44
Cp negrop.rote.ctive, Protective | 45
anti-oxidative stress
Rnd3 anti-proliferation Protective | 46
Dusp6 neuroprotective Protective | 47
Timp1 anti-inflammation Protective | 48, 49
Gdpd2 Unknown Unknown
Ac128848.1 Unknown Unknown
Sorcs1 Unknown Unknown
Col5a3 Unknown Unknown




Figure S3. The predicted roles of the DEGs that are temporarily upregulated at 1
month (up-down DEGs, 1m_STZ vs 1m_Ctrl) in Miller glial cells based on the

literature (related to Figure 2)
The gene name, function, predicted roles and references are listed.
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Figure S4. The expression of Gfap and candidate protective genes in Miuller glial
cells at 1 to 3 months post citrate buffer or STZ injection (related to Figure 2)

(A) Heatmap illustrating the logz(fold changes) of Gfap, Mt1, Sic14a1 and Zfp36 in Muller
glial cells (MG) at 1, 2, or 3 months after citrate buffer or STZ injection. (B) The expression
of GFAP protein in rat retinas. 1m, 2m or 3m: 1, 2 or 3 months after injection. Control:
with citrate buffer injection. STZ: with STZ injection. (C) Gfap expression (red signal).
Sox9 smFISH signals (green) indicate Muller glial cells (MG). The percentage of MG
expressing Gfap (efficiency) and the percentage of Gfap+ cells that are MG (specificity)
are shown in A5. (D) Mt1 expression (red signal). Sox9 antibody staining signals (green)
indicate Muller glial cells (MG). The percentage of MG expressing Mt1 (efficiency) and
the percentage of Mt71+ cells that are MG (specificity) are shown in A5. (E) Sic14a1
expression (red signal). Sox9 antibody staining signals (green) indicate Mduller glial cells
(MG). The percentage of MG expressing Sic14a1 (efficiency) and the percentage of
Slc14a1+ cells that are MG (specificity) are shown in A5.
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Figure S5. A comparison between Muller glial cells (MG) from rat diabetic retinas and
those from an acute injury mouse model, revealing partially overlapping transcriptional
profiles.

(A) UMAP plot illustrating diabetic rat MG (query) and mouse MG subjected to NMDA
treatment (reference). (B) UMAP plot illustrating the expression of Sox9, with the MG
cluster outlined by a dotted line box. (C) UMAP plot illustrating the expression of Gfap,
indicating gliosis in MG. (D) UMAP plots illustrating MG profiles under different conditions.
Wild type control mouse MG are depicted on the top, while control or STZ rat MG are
illustrated at the bottom. (E) Dotplot showing the expression of DEGs that are
temporarily upregulated at 1 month (1m up-down DEGs, 1m_STZ vs 1m_Citrl) in

NMDA treated mouse MG at various time points post NMDA injection.
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Figure S6. Zfp36 is transiently upregulated in diabetic retinas (related to Figure 3).
(A) ZFP36 and GAPDH were detected by western blotting in rat retinas at 1 month or 3
months post STZ injection. (B) The expression of Zfp36 in human retinas was detected
by gPCR. ND: healthy control; D: diabetic control without DR; DR: human retina samples
with DR.
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Figure S7. The efficiency and specificity of AAVIm8-pGFAP-EGFP (related to
Figure 4 and 5)

(A) The AAV-pGFAP-EGFP construct and the experimental schematic design. (B) A
representative image showing the transduction efficiency of AAV7m8-pGFAP-EGFP.
Scale bar: 1Tmm. (C-D) The specificity (C) and efficiency (D) of AAV7m8-pGFAP-EGFP
in labeling rat Mdller glial cells. (E) Representative images showing the specificity and
efficiency of AAV7m8-pGFAP-EGFP. Red: Sox9 antibody staining signals (Muller glial
cell marker). Scale bar: 20um. (F) The Gfap mRNA and protein are not induced upon
injection of AAV7m8-pGFAP-EGFP into the retina. Scale bar: 20um.
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Figure S8. The knocking down efficiency of Zfp36-shRNA and its rescue by
AAV7m8-ZR (related to Figure 4)

(A-B) The experimental design schematic (A). shRNA-76 can efficiently knock down
Zfp36 expression in HEK 293T cells in vitro (B). The ZR construct rescues this effect.
GFPd2: destabilized form of GFP. (C-D) The experimental design schematic (C). The
representative images showing retinas received AAV7m8-ZR and AAV7m8-Zfp36KD with
citrate buffer or STZ injection (D). Red: GFAP staining. Scale bar: 20um.
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Figure S9. The expression of Zfp36 in STZ retinas, and retinal phenotypes induced
by Zfp36 KD (related to Figure 3 and 4)

(A) Percentage of indicated cell types expressing Zfp36 in STZ rat retinas at 1 month post
STZ. (B-C). Quantification of retinal ONL (Outer nuclear layer, B) and INL (Inner nuclear
layer, C) thickness in control and STZ retinas. Mean + SD. Unpaired t-test with Welch’s
correction (two-tailed). *** P < 0.001, N numbers indicated in the charts. LacZi: rats
received AAV7m8-Ctrl. Zfp36i: rats received AAV7m8-Zfp36KD. (D) The percentage of
area with leakage over total retinal area at 2 months post STZ. (E) The Representative
images of elastase digestion. Scale bar: 50um. (F) Quantification of pericyte numbers in
retinas received AAV7m8-ZR or AAV7m8-Zfp36KD with citrate buffer or STZ injection.
Mean + SD. Unpaired t-test with Welch’s correction (two-tailed). * P <0.05, **P < 0.01, ns
P>=0.05. N numbers indicated in the charts.
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Figure S10. Potential molecular events downstream of Zfp36KD (related Figure 4
and Discussion)

(A) The experimental design. (B). Heatmap showing DEGs comparing Zfp36i+STZ vs
LacZi+STZ Muller glial cells. Blue: downregulated genes; Red: upregulated genes. (C)
GO enrichment analyses of upregulated or downregulated DEGs. (D) Dotplot showing
the expression of Nfe2/2 (encoding Nrf2) and Nrf responsive genes Nqo1 and Hmox1 in
WT or STZ retinas at 1, 2 or 3 months post STZ. (E) gPCR showing the expression levels
of antioxidant genes in LacZi+citrate, LacZi+STZ, and Zfp36i+STZ Muller glial cells.
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Figure S11. The expression of ferroptosis-related genes and insulin signaling
related genes in diabetic retinas (related to Figure 1)

(A-C). Volcano plot showing the expression of ferroptosis-related genes in rod, Muller
glial cells (MG) and A17 cells at 1, 2 or 3 months post STZ injection. Genes that promote
ferroptosis are labeled pink. Genes that prevent ferroptosis are labeled blue. Genes that
indicate the occurrence of ferroptosis are labeled green. Dotted lines: |log2(FoldChange)| >
1. (D) Known genes involved in insulin signaling pathways. Gray: not detected in our
scRNA-seq dataset (/Ins, Sic2a14, Irs4, Glut4 and Mapk2). (E) Dotplot showing the
expression levels of insulin signaling related genes in WT or STZ retinas at 1, 2 or 3
months post STZ.



Supplementary Method and Materials

Induction of Diabetes

STZ (Sigma #0130) injection was carried out in accordance with the established protocol(1) with
a dosage of 65mg/kg rat. Rats exhibiting consistently elevated fasting glucose levels exceeding
250mg/dl at 2, 7 days, 2 weeks, 1, 2, or 3 months post injection were included. Insulin was
intentionally omitted to mitigate confounding factors.

Plasmid construction

The AAV-pGFAP-EGFP plasmid was used as the backbone(2). The shRNA cassettes were crafted
in accordance with established methodologies(3). The AAV-Ctrl and AAV-Zfp36-KD plasmids
were generated by integrating the LacZ-shRNA or Zfp36-shRNA cassette (sShRNA-76, Figure S8)
into the backbone(2). The AAV-pGFAP-ZR-p2A-EGFP plasmid was constructed by inserting a
codon-optimized rat Zfp36 ORF, designed to be impervious to Zfp36-shRNA recognition into the
backbone. The AAV-pGFAP-Zfp36-p2 A-EGFP plasmid was created by introducing the wildtype
Zfp36 ORF into the backbone. Details of sequences are outlined in Table S1.

Adeno-Associated Virus (AAV) Production and Delivery

Recombinant AAV7mS8 viruses were produced and injected intravitreally following a prior
publication(2). Approximately 1.5 pul of AAV7mS8 (~10"12 gc/ml) was injected per eye.
Histology and Immunohistochemistry

Cryosections and wholemounts of rat retinas were prepared and stained following published
protocols(2). Primary antibodies utilized include chicken anti-GFP (Abcam, ab13970), rabbit anti-
Sox9 (Abcam, ab185966,, chicken anti-GFAP (Fisher scientific, NBP105198,, rabbit anti-Pax6
(ThermoFisher Scientific, 42-6600), sheep anti Chx10(Vsx2) (Exalpha Biologicals, X1179P),

Guinea pig anti RBPMS (PhosphoSolutions, 1832-RBPMS), goat anti Ibal (Abcam, ab5076),



AlexaFluor 647-conjugated IB4 (ThermoFisher, 132450), and Rabbit anti-Desmin (Abcam,
ab15200).

mRNA FISH

Rat retinal cells were prepared following established procedures(4). Probes were purchased from
ACDBio, and FISH was conducted according to commercial protocols.

Western blot

Western blot were performed following established procedure(5). The Zfp36 signals were captured
using the Amersham ImageQuant 600 (Cytiva) system. After imaging, Zfp36 signals were stripped
from the membrane (ThermoFisher, 21059), and rabbit anti-GAPDH (Abcam, ab9485) was
applied and imaged.

Retina Vessel Permeability Assay

NHS-Biotin (Thermo Fisher Scientific; 21335) was injected into the left ventricle of anesthetized
rats at the dosage of 0.4 mg/g body weight. Rats exhibiting a continuous, steady heartbeat for 7
minutes were included in the study. After 15 minutes of tracer circulation, eyeballs were enucleated
and fixed in 4% paraformaldehyde. AlexaFluor555-conjugated Streptavidin (ThermoFisher,
S21381) was used for NHS-Biotin detection.

Imaging and analysis

Retinal images were captured using Zeiss LSM880 or Olympus FV3000 confocal microscopes.
The images presented in Figures 3, 4, and 5 represent maximum projections of 5-10um tissue

sections, and their quantification was performed using Fiji software.
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Table S1. The primers and DNA sequences used in the study

Name

Sequence (5°-3’)

Experiments

Zfp36-shRNA-1

TGGAGGCTTGCTGAAGGCtgtaTGCTGATCGACATAAGGCTCTCGTAGGTTTTGGCCACT
GACTGACCTACGAGACTTATGTCGATCAGGACACAAGGCCTGTTACTAGCACTCACATG
GAACAAAT

shRNA with
flanking
sequences

ZR-p2A-EGFP

ATGGCCATTCGCGCCACCATGGATCTCTCTGCCATatatgaatctctcatgagcatGAGCCATGACCTGTCA
CCCGACCACGGAGGAACTGAGTCCTCCGGAGGACTTTGGAACATAAACTCATCGGACTCCATCC
CATCTGGGGTCACCTCTCGCCTGACTGGCCGCTCCACTAGCCTGGTGGAGGGCCGAAGCTGCA
GCTGGGTACCCCCACCCCCTGGTTTCGCACCCTTGGCTCCCCGCCCGGGCCCTGAGCTGTCAC
CCTCACCTACTTCGCCTACTGCAACTCCCACCACCTCCTCTCGATACAAGACTGAGCTCTGTCGG
ACCTACTCAGAGAGCGGGCGTTGTCGCTATGGGGCCAAGTGCCAGTTTGCCCACGGCCCGGGT
GAACTGCGCCAAGCCAATCGCCACCCCAAGTACAAAACGGAACTCTGCCACAAGTTCTACCTCCA
GGGCCGCTGCCCCTACGGCTCTCGATGCCACTTCATCCACAACCCTACCGAGGACCTGGCTCTC
CCTGGCCAGCCCCATGTGCTCCGACAAAGCATCAGCTTCTCAGGCTTGCCTTCAGGCCGCAGAA
CCTCACCACCACCTCCAGGCTTCTCTGGCCCTTCCCTGTCCTCTTGCTCCTTTTCGCCTTCCAGC
TCCCCACCACCGCCTGGGGACCTTCCACTTTCCCCTTCTGCCTTCTCTGCTGCCCCTGGGACCC
CTGTGTCTCGAAGAGACCCTACCCCAGCCTGTTGTCCCTCCTGCCGAAGGTCTACTACCCCTAG
CACCATCTGGGGGCCCTTGGGTGGTCTGGCTCGGAGCCCATCTGCACACTCTCTGGGATCCGA
CCCTGATGATTACGCCAGCAGCGGCAGCAGCCTGGGTGGGTCAGACTCGCCTGTCTTTGAGGC
CGGGGTGTTTGGGCCTCCTCAGCCCCCTGCACCCCCAAGGCGTCTTCCCATCTTCAATCGCATC
TCTGTCTCTGAGggaagcggagctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctggacctgctagcAT
GGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCG
ACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGC
TGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCAC
CCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTC
AAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACT
ACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGG
GCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCA
CAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCAC
AACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGAC
GGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCC
AACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGC
ATGGACGAGCTGTACAAGTAA

GSG_P2A_AS
is highlighted by
underlining.

Zfp36-p2A-EGFP

ATGGCCATTCGCGCCACCATGGATCTCTCTGCCATCTACGAGAGCCTTATGTCGATGAGCCATG
ACCTGTCACCCGACCACGGAGGAACTGAGTCCTCCGGAGGACTTTGGAACATAAACTCATCGGA
CTCCATCCCATCTGGGGTCACCTCTCGCCTGACTGGCCGCTCCACTAGCCTGGTGGAGGGCCG
AAGCTGCAGCTGGGTACCCCCACCCCCTGGTTTCGCACCCTTGGCTCCCCGCCCGGGCCCTGA
GCTGTCACCCTCACCTACTTCGCCTACTGCAACTCCCACCACCTCCTCTCGATACAAGACTGAGC
TCTGTCGGACCTACTCAGAGAGCGGGCGTTGTCGCTATGGGGCCAAGTGCCAGTTTGCCCACG
GCCCGGGTGAACTGCGCCAAGCCAATCGCCACCCCAAGTACAAAACGGAACTCTGCCACAAGTT
CTACCTCCAGGGCCGCTGCCCCTACGGCTCTCGATGCCACTTCATCCACAACCCTACCGAGGAC
CTGGCTCTCCCTGGCCAGCCCCATGTGCTCCGACAAAGCATCAGCTTCTCAGGCTTGCCTTCAG
GCCGCAGAACCTCACCACCACCTCCAGGCTTCTCTGGCCCTTCCCTGTCCTCTTGCTCCTTTTCG
CCTTCCAGCTCCCCACCACCGCCTGGGGACCTTCCACTTTCCCCTTCTGCCTTCTCTGCTGCCC
CTGGGACCCCTGTGTCTCGAAGAGACCCTACCCCAGCCTGTTGTCCCTCCTGCCGAAGGTCTAC
TACCCCTAGCACCATCTGGGGGCCCTTGGGTGGTCTGGCTCGGAGCCCATCTGCACACTCTCTG
GGATCCGACCCTGATGATTACGCCAGCAGCGGCAGCAGCCTGGGTGGGTCAGACTCGCCTGTC
TTTGAGGCCGGGGTGTTTGGGCCTCCTCAGCCCCCTGCACCCCCAAGGCGTCTTCCCATCTTCA
ATCGCATCTCTGTCTCTGAGggaagcggagctactaacttcagcctgctgaagcaggctggagacgtggaggagaaccctgga
cctgctagcATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG
GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTAC
GGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTC
GTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCAC
GACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACG
ACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCG
AGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTA
CAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAG
ATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCC
ATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGC
AAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATC

GSG_P2A_AS
is highlighted by
underlining.

ACTCTCGGCATGGACGAGCTGTACAAGTAA
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