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Supplementary Methods

1) Profile Similarity Score (PSS)

To cluster subjects a notion of similarity between subjects needs to be defined. We used subject-
level sequences of autoantibodies, i.e. individual autoantibody profiles across time to compute the
similarity score. A similarity score of O indicates that the two subjects are dissimilar with respect
to their IAb sequences while a score of 1 indicates that the two sequences of IAb are the same. To
operationalize the above, each subject was encoded as a binary matrix where the columns were
IAb types, the rows were visits (profiles), and the entries were whether each 1Ab was positive or
negative.

Endesfelder et al. * computed similarity between two IAb profiles by simply counting the number
of matches; e.g. the similarity between profile A1 and profile B1 is 2 because the two profiles
match in IAA and GADA, but differ in IA-2A (Figure S1). Two limitations exist with this
approach. First, it does not account for the imbalance in 1Ab positivity among the subjects, where
different types of 1Ab have different prevalence of positivity and therefore different risks 22,
Second, it is time agnostic as it does not account for the time gap between the two distinct profiles.
Timing is important as it has been previously shown that the age at which the 1Ab is detected is a
predictor of progression rate to type 1 diabetes #°. Therefore, in this work we addressed the above-
mentioned limitations as follows:

1a) Account for varying prevalence in autoantibody positivity

Different types of IAb carry different risks of progression to type 1 diabetes. Therefore, we
assigned a weight to an 1Ab match based on its prevalence in the data. The justification for this is

that a positive IAb match between two subjects is rarer than a negative 1Ab match, particularly at



similar clinical age. Therefore, if the IAb is rarely observed as positive then we assign it a higher
weight to emphasize that the positive match between two profiles for that 1Ab is unlikely to

happen. In order to account for the differences in the percentage of positivity, we assigned a data-

driven weight for positive matches as log (p:f”) where p and n are the number of positive and

negative IAb counts, respectively, and we assign 1 for negative matches. Thus, the weighting
accounts for variability of positivity within the same IAb and also across IAb (Table S1). So,
instead of computing the number of matches between two profiles to derive a similarity score, we
weighted each match differently — a) based on the type of 1Ab; and b) whether it is positive or
negative. We call this score the Profile Similarity Score (PSS). An example of PSS is shown in

Figure S1(c).

Computing the similarity score
The score between two profiles is based on the weights of each 1Ab and whether it is a positive
or a negative match. Let’s assume that w; is the weight for the IAb i = {IAA, GADA, 1A-2A}
which are based on Table S1. To compute the score between two profiles A = [a4, a,, as] and
B = [by, by, b3] wWhere a; and b; are either 1 for positive IAb i = {IAA, GADA, 1A-2A} and 0
for negative 1Ab as shown in Figure S1(a), we compute the intermediates scores s; and m;
between a; and b; as:

w;  If a; = b; = 1(positive match)

s; =41 if a; =b; =0 (negative match) , m; = {
0 mismatch

w;  if a; = b; = 1(positive match)
1 otherwise

Then the profile similarity score is computed as:

pss = Z3=15i/ )
Yigm



For example, the score between the two profiles A1 = [0, 1, 0] and B1 = [0, 1, 1] (as shown in

Figure S1)is s; =1,s, =3.7,5s3 =0, m; = 1, m, = 3.7, and my = 1. The profile similarity

score PSS = (1+3'7+°) = 0.82. The time weight tw between these two profiles tw =
1+3.7+1
(—(&2—27)2 ) ) ) )
e 20?) = 0.993. The time-aware distance score TPDS is computed as (1 — PSS) =

(1 — tw) = 0.001. Using the TPDS matrix we apply the dynamic time warping algorithm to

find the best alignment path that minimizes the weighted distances in the TPDS matrix. Using

YabePATHTPDS[ab] _
Ya,bePATH tw[a,b]

the optimal path, the normalized similarity score is computed as NSS = 1 —

0.001+0.003+0.002+0
1-— = 0.971.
0.01+0.02+0.02+0.16

1b) Time-aware Similarity

Two IADb profiles that are closer in terms of time (i.e. the age of the two subjects) should be
considered more similar than two profiles that occur further apart, given that the profiles are
otherwise similar. To address this temporal awareness issue, we incorporated the clinical age of
each profile occurrence in the similarity score, i.e. the similarity between two profiles is weighted

based on the time gap between the profiles. Let us assume that the time gap between two profiles

is d years. We defined the weight as an exponential function of time decay, i.e. e_dz/za2 where o
is a parameter defined as below. For a pair of profiles that are very far from each other (i.e. d>>0),
the time-decay weight becomes very small indicating that we should put less weight on how similar
the two I1Ab profiles are. For a pair of profiles that occurred around the same time (i.e. same age)
we put more weight on their similarity. Note that we still computed the similarity score between
the two 1ADb profiles as detailed above, it was just that the time-decay weight further modified the

influence of the duration gap and the clinical age at which measurements were done in the



longitudinal 1Ab profile similarity score. An example of this is shown in Figure S1(d). We setog =
4 in our analysis (see below the Computing the time decay factor section for details of this
parameter justification) indicating that if the time gap is more than 12 years, the time decay weight
should be close to zero to reduce the influence on the 1Ab profile similarity.

The Time-aware Profile Distance Score (TPDS) between two IAb profiles was then computed as

in equation (1) below; an example is shown in Figure S1(e).

TPDS = e<%f§) * PSS (1)

Computing the time decay factor

The time decay weight function depends on the parameter o which controls the rate of decay of
the influence of the time gap on the autoantibody profiles similarity as shown in Figure S2. In
order to choose a proper value for o, we analyzed the combined dataset to look at the correlation
between the time gap between every pair of visits and the absolute difference in the autoantibody
counts. We found that the majority of changes in autoantibody counts occur when the time gap is
roughly less than 12 years. Therefore, we choose 12 years as the time gap threshold so that if the
time gap is more than 12 years the time decay weight should be close to zero to reduce the

influence of the autoantibody profile similarity. Based on that observation, we choose o = 4.

2) Dynamic Time Warping (DTW) Alignment:

After computation of the pairwise similarity score between every pair of visits, we applied the
dynamic time warping algorithm © to align the 1Ab sequences from a pair of subjects based on the

computed TPDS distance scores. After finding the best alignment (i.e., the alignment that



maximizes the sum of scores along the path (Figure S1(e)), we computed the normalized sum of

scores (NSS) along the alignment.

3) Hierarchical / Agglomerative Clustering

Using the similarity score for every pair of subjects, we computed the distance as 1-NSS and
applied the hierarchical/agglomerative clustering algorithm using average UPGMA (unweighted
pair group method with arithmetic mean) linkage on the condensed distance matrix . This
algorithm clusters subjects into a hierarchy of clusters where each subject starts in its own cluster,
and as one moves up the hierarchy, pairs of clusters are merged. However, determining the number

of clusters from the hierarchy is not a straightforward process.

4) Number of Clusters from Hierarchical Clustering

We used a sampling-based method to run random clustering experiments and a recently proposed
metric — the proportion of ambiguously clustered pairs (PAC) metric & - to determine the number
of clusters in the cohort. The approach is to randomly sample (without replacement) N% of the
subjects and cluster them into K clusters, repeating the process M times. We chose to randomly
sample N=70% of subjects and repeat the sampling process M=1000 times in independent
experiments. From each random sampling, we inferred K clusters and by using all M random
experiments, we constructed a matrix where each element represents the probability that subject i
(row) and subject j (column) belong to the same cluster across the M experiments. This “consensus
matrix” is a matrix where entries are estimates of the probability that the two subjects belong to
the same cluster in the bootstrap experiments, i.e. the entry ranges from 0 (i.e. the two subjects

were never in the same cluster across M runs) to 1 (i.e. the two subjects were always in the same



cluster in all M runs). If the clustering is extremely stable, then a pair of sampled subjects would
often cluster together among runs or belong to different clusters in all runs.

Next, by plotting the cumulative distribution function (CDF) of the entries of the consensus matrix,
a new metric, the proportion of ambiguously clustered pairs (PAC) was generated 8. Essentially,
the lower left portion of the CDF represents subject pairs rarely clustered together, the upper right
portion represents those always clustered together, whereas the middle portion represents those
with occasional co-assignments in different clustering runs. The clustering is stable if the middle
part of the CDF is flat. PAC is defined as the fraction of subject pairs with consensus matrix entries
falling in the intermediate sub-interval (0.2, 0.8) € [0, 1] and can be used as a measure of the
stability of the clustering process &. The thresholds 0.2 and 0.8 indicate that the probability that a
pair of subjects belongs to the same cluster is either higher than 0.8 or less than 0.2. Lower values
of PAC indicate stable clusters, while higher values indicate unstable clusters. We repeated the
entire process to compute PAC for different values of K and then plotted K versus PAC to

determine the optimal number of clusters as shown in Supplementary Figure S3.
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Supplementary Figure S1: The process of computing the normalized similarity score between
two subjects A and B using their dynamic islet autoantibody profiles in (a) and (b).
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Supplementary Figure S2: The time -decay weight for different sigma. o = 1 (faster decay)
indicates that the profiles that are more than 2-year apart their autoantibodies profiles are almost

negligible, while ¢ = 8 still puts non-zero weight on autoantibodies profiles that are 22-year
apart.
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Supplementary Figure S3: Estimating the number of clusters by using the proportion of
ambiguously clustered pairs (PAC) method. Lower value of PAC indicates more stable clusters.

5 and 18 clusters are the most stable clusters.
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Supplementary Figure S4: Panels A-K illustrate longitudinal patterns of islet autoantibodies

(IAA, GADA, IA-2A) in 11 out of 18 subclusters of children with distinct dynamics of islet
autoimmunity (18C1, 18C2, 18C4, 18C7, 18C10, 18C12, 18C13, 18C14, 18C16, 18C17 and

18C18). Green indicates the fraction of positivity for each antibody across all measurements at
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each age (dark green indicates mostly positive). The middle section in each panel (Diabetes)
shows the cumulative proportion of children progressing to type 1 diabetes. The bottom section
in each panel (#Visits) shows the number of measurements collected at each age. Data for the
seven subclusters that included less than 10 children is not included.

Subcluster 18C7 was almost identical to cluster 5C2 (n=80, all three 1Ab persistently positive
from age <2 years, 5-year diabetes risk 71.4% and 10-year risk 92.3%, Panel D). Similarly,
subcluster 18C16 was almost identical to cluster 5C4 (n=43, persistent IAA and GADA from 2-3
years of age but mostly negative for IA-2A, 5-year diabetes risk 41.2%, Panel I). Subclusters
18C1 (n=100, Panel A), 18C2 (n=540, Panel B) and 18C4 (n=432, panel C) originated from 5C1
and were characterized with positivity for a single, often reverting 1Ab (IA-2A, IAA or GADA,
respectively, and low 5-year and 10-year diabetes risk (1.1% and 3.1%, 2.6% and 5.9%, and
0.3% and 1.3%, respectively).Individuals in the following four subclusters of cluster 5C3 had
also relatively high 5-year progression rates to type 1 diabetes: 18C10 (n=254, 5-year risk
26.7%), 18C12 (n=111, 5-year risk 41.5%), 18C13 (n=11, 5-year risk 41.6%), and 18C14 (n=86,
5-year risk 27.5%). These four subclusters were characterized by one or two types of persistent
IAb: 18C10 by persistent GADA and 1A2A from age 4-6 years but fluctuating or reverting IAA
(Panel E), 18C12 by early persistent IAA and IA-2A from age 1-2 years but less frequently
GADA (Panel F), 18C13 by persistent GADA and 1A-2A from age 6-8 years but mostly negative
IAA (Panel G), and 18C14 by persistent IA-2A from age 2.9 years but less frequently positivity
for GADA or IAA (Panel H). Individuals in subcluster 18C17 (n=136, 5-year risk 11.7%)
resembled those in cluster 5C5, all 136 individuals developing GADA at median age of 5.6 years
and rarely having IAA or IA-2A, while children in subcluster 18C18 (n=32, 5-year risk 6.2%)
had a pattern of single IAA from age 4 years, and later switching to GADA and/or 1A-2A

positivity from age 8-9 years (Panels J and K, respectively).

13



Supplementary Table S1: The number of samples analyzed for each islet autoantibody, the
percentage of positivity, and the proposed weight for positive match relative to negative one of
each autoantibody. The total number of individual samples was 260,667.

IAA GADA 1A-2A
Number of samples 192,707 189,848 189,955
Percentage (number) of positivity 5% (n=9049) | 8% (n=14626) | 6% (n=10810)
Proposed weight for a positive match 4.4 3.7 4.1
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Supplementary Table S2. Characteristics of children positive for islet autoantibodies (1Ab) in the 8/18 clusters with more than 10 individuals.

Name of the cluster 18C7 18C10 18C12 18C13 18C14 18C16 18C17 18C18
Number of subjects [males], n 80 [29] 254 [125] 111 [41] 11 [3] 86 [28] 43 [19] 136 [65] 32 [12]
Number of cases with type 1 diabetes, n 77 148 87 8 68 30 34 7

Age at diagnosis, yr, median [IQR] 4.2 [3.0-7.0] 10.4 [7.5-13.5] 7.1[4.3-9.8] 12.4[9.7-14.6] | 9.0[6.9-12.1] 7.3[4.0-9.5] | 12.4[10.2-14.8] | 13.1[9.2-13.7]
HLA Class Il group A 31% 31% 30% 18% 28% 47% 24% 16%
HLA Class Il group B 48% 47% 53% 36% 59% 30% 46% 59%
HLA Class Il group C 11% 7% 6% 36% 3% 12% 12% 16%
HLA Class Il group D 10% 15% 11% 9% 9% 12% 18% 9%
Follow-up time, yr, median [IQR] 4.0 [3.0-6.2] 12.4[9.1-15.2] 8.0[4.6-10.0] | 11.4[9.2-13.6] | 9.1[6.8-12.1] 7.8[3.9-11.6] | 14.2[11.4-17.6] | 14.6[10.5-18.1]
“First sample positive for IAA 1.5 (n=80) 5.2 (n=191) 1.6 (n=110) 10.1(n=3) 2.2 (n=68) 2.5 (n=42) 8.0 (n=77) 4.0 (n=31)
“First sample positive for GADA 1.8 (n=80) 4.2 (n=254) 2.2 (n=90) 8.9 (n=9) 3.0 (n=70) 3.0 (n=43) 5.6 (n=136) 8.3 (n=23)
“First sample positive for IA-2A 2.1 (n=80) 6.0 (n=254) 2.5 (n=111) 6.7(n=11) 2.9 (n=86) 4.5 (n=8) 7.6 (n=39) 9.8 (n=19)
“Last sample positive for IAA 4.0 (n=80) 9.8 (n=191) 6.7 (n=110) 10.4 (n=3) 5.0 (n=68) 7.8 (n=42) 11.1 (n=77) 8.0 (n=31)
“Last sample positive for GADA 4.0 (n=80) 12.4 (n=245) 7.3 (n=90) 12.2 (n=9) 6.2 (n=70) 7.8 (n=43) 13.8 (n=136) 5.0 (n=23)
“Last sample positive for IA-2A 4.0 (n=80) 12.4 (n=254) 8.0 (n=111) 11.4 (n=11) 9.1 (n=86) 5.4 (n=8) 9.6 (n=39) 13.9 (n=19)
fAge at seroconversion, yr, median [IQR] 1.41.0-2.0] 4.5[3.0-7.4] 1.6]1.1,3.1] 6.7 [5.2-8.3] 2.8[1.5-4.5] 2.5[1.5,4.0] 6.8[4.0,9.1] 5.0[2.1-9.4]
"Number of seroconverted individuals, n 80 254 111 11 86 43 131 31
*IAb profile: 1AA only 51.2/0.0 2.8/0.0 51.4/0.0 0.0/0.0 27.9/0.0 48.8/0.0 5.1/0.0 93.8/3.1
*I1Ab profile: GADA only 11.2/0.0 51.2/0.4 0.9/0.0 0.0/0.0 7.0/0.0 27.9/4.7 70.6/86.8 3.1/46.9
*|Ab profile: 1A-2A only 0.0/0.0 1.6/2.0 9.0/0.0 100/18.2 18.6/96.5 0.0/0.0 0.7/2.9 0.0/34.4
t1ADb profile: IAA+GADA, neg IA-2A 30.0/0.0 19.7/0.0 18.0/0.0 0.0/0.0 3.5/0.0 23.3/95.3 19.9/6.6 3.1/0.0
f|Ab profile: IAA+IA-2A, neg GADA 6.2/1.2 0.8/0.4 12.6/61.3 0.0/0.0 14.0/1.2 0.0/0.0 0.0/0.7 0.0/3.1
f|Ab profile: GADA+IA-2A, neg IAA 0.0/0.0 11.4/71.7 1.8/20.7 0.0/81.8 18.6/2.3 0.0/0.0 2.9/2.9 0.0/12.5
f|ADb profile IAA+GADA+IA-2A 1.2/98.8 12.6/25.6 6.3/18.0 0.0/0.0 10.5/0.0 0.0/0.0 0.7/0.0 0.0/0.0
5-yr risk of type 1 diabetes, % (95% CI) 71.4(61.3-80.9) | 26.7 (21.6-32.9) 41.5(32.9-51.3) | 41.6 (17.7-77.3) 27.5(19.2-38.5) 41.2 (27.9-57.8) 11.7 (7.1-18.9) 6.2 (1.6-22.7)

10-yr risk of type 1 diabetes, % (95% CI)

92.3(84.6-97.0)

59.4 (52.5-66.3)

76.8 (67.8-84.9)

100 (100-100)F

76.7(66.5-85.7)

72.5 (57.5-85.8)

25.6 (18.0-35.6)

21.7 (10.2-42.5)

“Median age (yr) and number of subjects positive for each IAb

tSeroconversion was defined as the first of the two consecutive visits with positivity for the same type of 1AD.

I Ab profile, seven mutually exclusive possibilities, in the first/last positive sample (%)

$The 10-year risk is 100 as all diagnosed subjects were diagnosed with T1D before age 10
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