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Supplemental Methods

Bulk RNA sequencing

Total RNA was extracted from five to ten pancreatic islets isolated from db™" and db/db
mice. ImmunoGeneTeqs, Inc (Noda, Japan) was entrusted with the RNA amplification
and bulk RNA-seq. The mapped reads per gene (raw tag counts) were quantified as gene
expression. Between-sample normalization of gene expression was conducted against raw
count data by iDEP 1.1 (http://bioinformatics.sdstate.edu/idep/) with DESeq2. Genes with
adjusted p-value <0.05 and fold-change of >2 between at least three samples were
determined as statistically significant DEGs. Raw data from the experiment have been

recorded in the DDBJ database.

Cell culture

The mouse insulinoma MING6 cells were regulated in Dulbecco's Modified Eagle Medium
(DMEM) comprising 25-mM glucose supplemented with 15% fetal bovine serum (FBS),
100-units/ml penicillin, 100-pg/ml streptomycin, 100-pg/ml L-glutamine, and 71-uM f-
mercapto-ethanol. INS-1 832/13 cells were cultured in RPMI-1640 medium containing
11-mM glucose supplemented with 10% FBS, 50-uM B-mercapto-ethanol, 1-mM sodium

pyruvate, 10-mM HEPES, 100-ug/mL streptomycin, and 100-IU/ml penicillin.

Treatment of MING cells and isolated islets with palmitate and chemicals
As previously described, MING6 cells and isolated islets were treated with palmitate and
chemicals (1). Insulin content and insulin secretion of MING cells and isolated islets were

measured as detailed elsewhere (1).



RNA extraction and quantitative real-time PCR

Total RNA extraction from isolated islets and MIN6 cells, cDNA synthesis, and
quantitative real-time PCR (qQRT-PCR) were carried out as previously described (1). The
primer sequences that we employed were shown in Supplemental Table 11. mRNA

expression levels were normalized to that of cyclophilin B mRNA.

Immunoblot analysis

Protein extraction from the cells and immunoblot analysis was carried out as previously

described (2).
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Supplemental Figure 1. Phenotypic characteristics of db+/+ and db/db mice and bulk
RNA-seq analysis of pancreatic islet cells isolated from db+/+ and db/db mice. (A)
Body weights, fasted blood glucose levels, fed plasma insulin levels, and hemoglobin Alc
(HbAlc) levels of 6- and 10-week-old db™"* and db/db mice used in this study. N = 3—-5
per group., *P <0.05, ****P <(.0001. (B) Representative confocal images of pancreatic
sections from db"* and db/db mice at indicated ages stained with antibodies against
insulin (green, B-cell marker), glucagon (red, a-cell marker), and DAPI (bule, nuclei).
Scale bar = 50 um. (C) t-SNE plot of pancreatic islet cells isolated from 6- and 10-week-
old db"* and db/db mice as determined by bulk RNA-seq. (D, E) Unsupervised
hierarchical clustering of bulk RNA-seq data from pancreatic islet cells isolated from 6-
and 10-week-old db™* (D) and db/db (E) mice. (F) Volcano plots depicting differentially
expressed genes (FDR < 0.05) in 6-week-old db™" versus 6-week-old db/db islets (left),
10-week-old db™* versus 10-week-old db/db islets (left), and 6-week-old db/db versus

10-week-old db/db islets (right), as determined by bulk RNA-seq.
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S
c B =
S 1.00 £
g Cell number 2 015 Cell number
aQ o
Sors » g ]
a 40 < 40
= Z 0.10
g 30 x 30
o
db/db 10 weeks 8 20 (_EU 0.05 20
db/db 6 weeks 8 10 E 10
s @ i
db+/+ 6 weeks = g o 5
0 2500 5000 7500 0 2000 4000 6000 8000 © 0 2000 4000 6000 8000
Detected gene number nGene nGene
D Sst Ppy Plvap Cd74
T T T T,
310 340 375 3
S s 8 s s 6
2 5 25 2 2
o o o 25 o 3
3 < & | 3
W 0ttt § b e b e L 1 O e (YR e g ol g ot —F
01234567 8910111213141516171819 012345678 0910111213141516171819 012345678 910111213141516171819 01234567 8910111213141516171819
Clusters Clusters Clusters Clusters
Col1a2 Krt19 Prss1 Mki67
3 10 D 8+ ko o)
2 2 2 2
5 ] B 9 K
5 N 5 5
3 5¢ G 4 5 6 73
@ 2 ? @
< | | | L . o 3. | IS
< <3 <3 <
2 3 2 2
a o U gttt 13 - Yo—_ll 1 L 1Ol u
012345678 910111213141516171819 012345678 910111213141516171819 0123456780910111213141516171819 012345678 910111213141516171819
Clusters Clusters Clusters Clusters

Cluster
E ﬁ Endotherial ° 0
© db bw Stellate 1
® db/db 6w ° 2
© db/db 10w { o 3
) ® 4
15 KI67 ° 5
® 6
e 7
® 8
® 9
B-cells ® 10
e 1
® 12
. o . o 13
. Acinar ‘ e 14
% é ® 15
p P ® 16
N Ve . N 18 . MoMac ® 17
Ee Ed Ductal d-cells ° 18
3 3 ® 19
UMAP_1 UMAP_1
F Ins1 Geg Ppy Sst Prss1
10 10 10 10 10
15 15 15 15
16 16 16 16
8g 89 8g 8g
, 0 0 0 0
13 42 a2, 13 12 13 42
M 244 ﬁ 2% S 244 $i1 244
19 19 19 19
14 14 14 14 14
18 18 g | 18 &7 18 Y
Plvap Cd74 Col1a2 Mki67
10 $0 10 10 10 Igg
15 15 15 5] 15 2.0
16 16 16 16 16 15
89 8g 89 89 89 10
0 0 0 0 0
13 42 13 42 13 42 13 42 13 42
11 244 1 2,y 11 244 1 24 1 244
«~ 19 19 19 19 19
! 14 14 4 14 14
A s W 18 18 ¥ # 18 & 18 &7
=
)



Supplemental Figure 2. scRNA-seq analysis of pancreatic islet cells isolated from
db*"* and db/db mice. (A) Ridgeline plot representation of the distribution of detected
gene number of islet cells from 6-week-old db*’", 6-week-old db/db, and 10-week-old
db/db mice. (B, C) Hexagonal pseudocolor plots of library quality metrics of
mitochondrial gene (B) and ribosomal RNA (C) proportions. (D) Violin plots showing
the expression levels of Sst (delta cell), Ppy (PP cell), Plvap (endothelial cell), Cd74
(monocyte-derived macrophage), Colla2 (pancreatic stellate cell), Prss/ (acinar cell),
Krt19 (ductal cell), and Mki67 (Ki67 positive cell). (E) UMAP plot of 4,956 islet cells
from 6-week-old db™", 6-week-old prediabetic db/db, and 10-week-old diabetic db/db
mice. All cells are colored by genotype and age (left). Unsupervised clustering identified
20 clusters (right). (F) Expression levels of known markers of B-cell (Ins1), a-cell (Gcg),
PP-cell (Ppy), d-cell (Ss?), acinar cell (Prss-1), ductal cell (Krt19), endothelial cell (Plvap),
monocyte-derived macrophage (Cd74), pancreatic stellate cell (Colla2), and Ki67-

positive cell (Mki67) in UMAP space.
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Supplemental Figure 3. Expression patterns of DEGs in pancreatic islet cells isolated
from db*"" and db/db mice. (A, B) Violin plots of the most upregulated genes in
nondiabetic (A) and diabetic (B) B-cell clusters. (C) Ingenuity pathway analysis (IPA) of
DEGs (left panel), DEGs (middle panel), and feature plots of the most upregulated genes
(right panel) in a-cell clusters. The number of genes which exhibited a significantly
altered expression in each IPA pathway is shown within the parenthesis. (D) Violin plots

of the most upregulated genes in a-cell clusters.
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Supplemental Figure 4. Analyses of Anxal0 in pancreatic islets and B cells. (A) A
violin and box plot of the Anxal0 expression (log2 TPM+1) in islets from 6- and 16-
week-old db™* and db/db mice using the NCBI dataset GSE169275. (B) Feature plots of
Anxal( and Insl in islet cells from 10-week-old db*"* and db/db mice using the NCBI
dataset GSE165267. (C) A box plot of the Anxal( expression (log2 TPM+1) in islets
isolated from transgenic mice expressing mutant glucokinase (Y214C) (Mutant-GCK)
and control (Ctrl) mice using the NCBI dataset GSE86949. (D) Representative confocal
images of pancreatic sections from db"™" and db/db mice at indicated ages stained with
antibodies against Aldhla3, insulin, and DAPI. (E) Representative confocal images of
pancreatic sections from ob/ob mice at indicated ages stained with antibodies against
AnxalO0, insulin, and DAPI. (F) Representative confocal images of pancreatic sections
from C57BL/6 mice fed a chow or high-fat diet (HFD) for 12 weeks that were stained
with antibodies to Anxal0 and insulin, and DAPI. (G) Functional enrichment pathways
and top 5 genes for AnxalO-positive correlation and AnxalO-negative correlation in f3
cells from 6-week-old db/db mice revealed by Gene correlation network analysis. (H)
Immunoblot analysis of AnxalO in subcellular fractions isolated from MING6 cells stably
expressing GFP or GFP-Anxal0. Cells were treated with vehicle or 1-uM thapsigargin
(TG) for 24 hours. Known cytoplasmic (Cyto, a-tubulin), nuclear (Nuc, Lamin A/C),
membrane (Mem, Na“, K'-ATPase), and mitochondria (Mt, Tom20) proteins were used
to validate the fractions. (I) Representative confocal images of INS-1 832/13 cells stained
with Anxal0, MitoTracker, and DAPI. Cells were treated with vehicle, 1-uM thapsigargin,
or 30-mM KCI for 24 hours. Scale bar = 10 and 5 um for vehicle- and thapsigargin- or

KCl-treated cells, respectively.
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Supplemental Figure 5. Effects of Anxal0 overexpression in MIN6 cells. (A)
Messenger RNA and protein levels of Anxal0 in MING6 cells infected with full-length
Anxal0 expressing adenovirus (Ad-Anxal0) or control adenovirus (Ad-Mock) for 48
hours. (B) GSIS and KSIS in MIN6 cells infected with Ad-mock or Ad-Anxal0 for 48
hours (n = 3-6). (C) Messenger RNA levels of Anxal0 in MING6 cells stably expressing
GFP or GFP-AnxalO (n = 3). (D) The proportion of apoptosis cells in MIN6 cells stably
expressing GFP or GFP-Anxal0 treated with or without 1 uM TG for 24 hours (n = 3).
(E) The volcano plot of scRNA-seq for differentially expressed transcripts in AnxalO-
positive B cells. (F) Representative confocal images of MING cells stably expressing GFP
or GFP-Anxal0 that were stained with E-cadherin antibody and DAPI. Scale bar, 25 pm.
(G) Immunoblot analysis of E-cadherin in MING6 cells stably expressing GFP or GFP-

Anxal0. The results were quantified by densitometry (n = 3). *P < 0.05, ***P < (0.001.
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Supplemental Figure 6. Gene expression of acinar- and 6-cell markers during B-cell
transdifferentiation. (A) Pathway diagram for GPCR-Mediated Nutrient Sensing in
Enteroendocrine Cells provided by Ingenuity Pathway Analysis. DEGs in B-cell
subcluster-2 are shown in magenta. Inferred nodes and edges upregulated in B-cell
subcluster-2 are depicted in orange. (B) Feature and violin plots of 5-cell (Ss¢) and acinar-
cell (Trp4, Prssl) marker genes in B-cell subclusters. (C) Pathway diagram for SPINK1
Pancreatic Cancer Pathway provided by Ingenuity Pathway Analysis. DEGs in Beta-7
cluster are shown in magenta. Inferred nodes and edges upregulated in B-cell subcluster-
7 are depicted in orange. (D) Heatmap showing pseudotime ordering of DEGs in db/db

B-cell subclusters.
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Supplemental Figure 7. Cell-cell communications in db/db islets predicted by the
CellChat. (A) Circle plot visualizations of all cell-cell interaction strength among
individual cell types in 6- and 10-week-old db/db islets. Circle size of each cell type is
normalized to the cell number of each subset. Arrows and edge color represent direction.
The thickness of the lines connecting cells represents the interaction strength. Clusters
are consistent with Figure 1. (B) Signaling pathway networks that are active in 6- and 10-
week-old db/db islets based on the differences in the overall information flow. (C, D) Top
5 upregulated DEGs and ingenuity pathways in endothelial (C) and stellate (D) cell
clusters. (E, F) The outgoing (E) and incoming (F) signaling patterns within 6- and 10-
week-old db/db islet cells. glucagon (Gcg), endothelin (EDN), fibronectin 1 (FNI),
vascular endothelial growth factor (VEGF), protease-activated receptors (PARs),

chemokine ligand (CXCL), monocyte-derived macrophage (MoMac).



Supplemental Table 1. Cell number of each islet cell cluster.

Supplemental Table 2. Marker genes used for cell type annotation.

Supplemental Table 3. Differentially expressed genes of each islet cell cluster.
Supplemental Table 4. Gene list for Ingenuity Pathway Analysis of each islet cell cluster.
Supplemental Table 5. Clinical characteristics of study subjects.

Supplemental Table 6. Gene network analysis of the correlation of AnxalO with genes
in pancreatic B cells from 6-week-old db/db mice.

Supplemental Table 7. Cell number of each B-cell subcluster.

Supplemental Table 8. Differentially expressed genes of each B-cell subcluster.
Supplemental Table 9. Modules and differentially expressed genes of pseudotime
analysis of db/db B-cell subclusters.

Supplemental Table 10. Gene list for Ingenuity Pathway Analysis of each [-cell
subcluster.

Supplemental Table 11. Primer sequences used for the quantitative real-time PCR

analysis.
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