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Supplementary Figure 1. T3 affects systemic metabolic homeostasis.

A: Schematic illustration of MMI and T3 administration schemes to obtain hypothyroid (MMI) mice
and T3 treated (MMI+T3) mice. B: Glucose tolerance test (GTT) (left) and the corresponding AUC
(right) of MMI and MMI+T3 mice (n = 10). C and D: Representative images of H&E staining of
the iWAT and eWAT (C) and immunofluorescence (IF) staining of UCP1 of the iWAT (D) from
MMI and MMI+T3 mice. Scale bars: 100 um (C), 20 um (D). E: Relative mRNA expression of
indicated genes in iWAT of MMI and MMI+T3 mice (n = 4-6). F and G: Body weight (BW) of
ATRBKO (F, n =9) and ATRaKO (G, n = 6-7) mice. H: Representative H&E staining images of
iWAT from Floxed and ATRaKO mice treated with Vehicle (Veh) or T3. Scale bars: 100 um. / and
J: Oxygen consumption (VO») (/, left) and energy expenditure (EE) (J, left) in Floxed and ATRBKO
mice during the day/night cycles. Average VO rate (/, right) and EE value (J, right) in Floxed and
ATRBKO mice during the day and night, respectively (n = 6-7). Data are presented as mean + SEM.
Statistical significance was determined by Student’s #-test for panel B, E-G, [ and J. *p < 0.05, **p
< 0.01 and ***p < 0.001. NS, not significant.
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Supplementary Figure 2. TR mediates T3 action on glucose usage in iWAT.

A: Top KEGG pathways regulated by T3 in an adipocyte TRB-dependent manner. B: Heatmap
illustrating the expression profile of genes involved in glucose uptake and usage in the iWAT of
Floxed and ATRBKO mice treated with Veh or T3. C: Relative mRNA expression of glycolytic genes
in the iWAT of Floxed and ATRBKO mice treated with Veh or T3 (n = 4-6). Data are presented as
mean + SEM. Statistical significance was determined by two-way ANOVA with Tukey's multiple
comparisons test for panel C. A significant genotype-by-treatment interaction was observed for the
mRNA levels of glycolytic genes (C). *p < 0.05, **p < 0.01 and ***p < 0.001. NS, not significant.
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Supplementary Figure 3. TRf} mediates T3 action on lipid metabolism and energy dissipation
in iWAT.

A: Heatmap illustrating the expression profile of genes involved in lipid metabolism in the iWAT of
Floxed and ATRBKO mice treated with Veh or T3. B: Western blots of ACLY, ACC, and FASN in
the iWAT of Floxed and ATRBKO mice. C: Relative mRNA expression of ELOVL6 and SCD1 in
iWAT-SVF-derived adipocytes from Floxed and ATRBKO mice in the presence or absence of T3 (n
= 3-6). D: Relative mRNA expression of ATGL (D, n = 6) in the iWAT of Floxed and ATRBKO mice
treated with Veh or T3. E: Relative mRNA expression of DGAT2 in the iWAT of Floxed and
ATRBKO mice treated with Veh or T3 (left, n = 5-6) and in iWAT-SVF-derived adipocytes from
Floxed and ATRBKO mice in the presence or absence of T3 (right, n = 3). F and G: Heatmap
depicting the expression profile of genes involved in UCP1-dependent thermogenesis (F) and
UCP1-independent thermogenic pathways, including TAG-FA cycling, creatine futile cycling, and
Ca?" futile cycling (G) in the iWAT of Floxed and ATRBKO mice treated with Vehicle or T3. Data
are presented as mean + SEM. Statistical significance was determined by two-way ANOVA with
Tukey's multiple comparisons test for panel C-E. A significant genotype-by-treatment interaction
was observed for the mRNA levels of SCD1 (C) and DGAT?2 (E). A trend for genotype-by-treatment
interaction was observed for the mRNA levels of ATGL (D, p = 0.0536). *p < 0.05, **p <0.01 and
**%p < 0.001. NS, not significant.
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Supplementary Figure 4. The effects of T3 and loss of adipocyte TR on gene expression in
iWAT at thermoneutrality.

A: Relative mRNA expression of PGCla, DIO2, COX8B and CIDEA in the iWAT of Floxed and
ATRBKO mice housed at room temperature (RT) treated with Veh or T3 (n = 5-6). B-I: Relative
mRNA expression of GLUT4, PDK4 (B), de novo lipogenic genes (C), SCD1 (D), ELOVL6 (E),
oxidative genes (), UCP1 (G), GYK (H), PGCla, DIO2, COX8B and CIDEA (/) in the iWAT of
Floxed and ATRBKO mice housed at 30°C treated with Veh or T3 (n = 4). Data are presented as
mean + SEM. Statistical significance was determined by two-way ANOVA with Tukey's multiple
comparisons test. A significant genotype-by-treatment interaction was observed for the mRNA
levels of PGCla, DIO2, COX8B and CIDEA at RT (4), and GLUT4, PDK4 (B), ACLY (C), SCDI1
(D), ELOVLS6 (E), PPARa, CPT1B, VLCAD (F), UCP1 (G), GYK (H), DIO2, COX8B and CIDEA
(1) at 30°C. A trend for genotype-by-treatment interaction was observed for the mRNA levels of
ACCI1 (C, p=0.0606), FASN (C, p = 0.0580) and PGCla (Z, p = 0.0663) at 30°C. *p < 0.05, **p <
0.01 and ***p < 0.001. NS, not significant.
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Supplementary Figure 5. Loss of adipocyte TR has differential effects on T3-regulated gene
expression in different fat depots.

A: Relative mRNA expression of de novo lipogenic genes, SCD1, ELOVL6, UCP1, oxidative genes,
GLUT4, PDK4 and GYK in the eWAT of Floxed and ATRBKO mice treated with Veh or T3 (n = 5-
6). B: Relative mRNA expression of de novo lipogenic genes, SCD1, ELOVL6, UCP1, oxidative
genes, GLUT4, PDK4 and GYK in the iBAT of Floxed and ATRBKO mice treated with Veh or T3
(n = 6). Data are presented as mean + SEM. Statistical significance was determined by two-way
ANOVA with Tukey's multiple comparisons test. A significant genotype-by-treatment interaction
was observed for the mRNA levels of FASN, SCD1, ELOVL6, UCP1 and CPT1B in eWAT (4). A
trend for genotype-by-treatment interaction was observed for the mRNA levels of ACLY (4, p =
0.0904), ACC1 (A, p=0.0747) and PDK4 (A, p = 0.0674) in eWAT. *p <0.05, **p <0.01 and ***p
<0.001. NS, not significant.
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Supplementary Figure 6. ChREBP is controlled by the TRf-mediated T3 signalling in iWAT.

A: Relative mRNA expression of ChREBP in the iWAT of Floxed and ATRBKO mice housed at 30°C
treated with Veh or T3 (rn = 4). B: ChIP-PCR analysis of enrichment (percent input) of H3K27
acetylation and TRB-Flag at the putative TR binding sites of the promoter region of ChREBP in
iWAT-SVF-derived adipocytes in the presence or absence of T3 (rn = 3). C and D: Relative mRNA
expression of ChREBP in the eWAT (C, n = 5-6) and iBAT (D, n = 6) of Floxed and ATRBKO mice
treated with Veh or T3. E and F: Relative mRNA levels of ChREBP in the iWAT of T3-treated
Floxed and ATRaKO mice (£, n = 5-7) and iWAT-SVF-derived adipocytes from Floxed and
ATRoKO mice in the presence of T3 (F, n = 3). G and H: Relative mRNA levels of indicated
lipogenic transcription factors (TFs) (G, n = 4-6) and western blots of ChREBP (#) in the iWAT of
MMI and MMI+T3 mice. /I: Relative mRNA levels of SREBPIC in the iWAT of Floxed and
ATRBKO mice treated with Vehicle (Veh) or T3 (n = 6) and in iWAT-SVF-derived adipocytes from
Floxed and ATRBKO mice in the presence or absence of T3 (n = 3). Data are presented as mean =+
SEM. Statistical significance was determined by Student’s #-test for panel B and E-G, and two-way
ANOVA with Tukey's multiple comparisons test for panel 4, C, D and /. A significant genotype-by-
treatment interaction was observed for the mRNA levels of ChREBPs in iWAT at 30°C (A4), and
ChREBP in eWAT (C). *p < 0.05, **p < 0.01 and ***p < 0.001. NS, not significant.
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Supplementary Figure 7. ChREBP mediates the T3 action on metabolic genes in iWAT.

A-C: Relative mRNA expression of ATGL (4), DGAT2 (B) and GYK (C) in iWAT-SVF-derived
adipocytes from Floxed and AChRKO mice in the presence or absence of T3 (n = 4). D-G: Relative
mRNA expression of ChREBP, de novo lipogenic genes (D), GLUT4 (£), PDK4, UCP1 (F) and
GYK (G) in iWAT-SVF-derived adipocytes infected with the shRNA lentivirus of ChREBP (n = 4).
H and I: ChIP-PCR analysis of enrichment (percent input) of H3K27 acetylation at the putative TR}
binding sites of the promoter region of ACLY, ACC1 (H), FASN, SCD1, GLUT4, PDK4 and UCP1
(/) in iWAT-SVF-derived adipocytes infected with the shRNA lentivirus of ChREBP in the presence
or absence of T3 (n = 3). J: ChIP-PCR analysis of TRB-Flag recruitment (percent input) at the
putative TR binding sites of the promoter region of ACC1, UCP1, ACLY, PDK4 and SCDI1 in
iWAT-SVF-derived adipocytes infected with the shRNA lentivirus of ChREBP in the presence or



absence of T3 (n = 3). K: Agarose gel electrophoresis of PCR products from ChIP-PCR analysis of
TRP-Flag recruitment at the putative TR binding sites of the promoter region of GLUT4 and FASN
in iIWAT-SVF-derived adipocytes infected with the shRNA lentivirus of ChREBP in the presence or
absence of T3. Data are presented as mean = SEM. Statistical significance was determined by two-
way ANOVA with Tukey's multiple comparisons test for panel A-C and H-J, and Student’s #-test for
panel D-G. A significant genotype-by-treatment interaction was observed for the mRNA levels of
DGAT2 (B) and GYK (C). A trend for genotype-by-treatment interaction was observed for the
mRNA levels of ATGL (4, p = 0.0846). A significant ChREBP knockdown-by-treatment interaction
was observed for the enrichment of H3K27 acetylation for promoter of ACLY, ACC1 (H), FASN,
SCD1, GLUT4, PDK4 and UCP1 ({). *p < 0.05, **p <0.01 and ***p < 0.001. NS, not significant.
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Supplementary Figure 8. Ablation of adipocyte TR mimics the HFD effects on glucose uptake
and de novo FA synthesis in iWAT.

A: Venn diagram illustrating commonalities and differences between downregulated genes in the
iWAT of ATRBKO mice in response to T3 treatment and downregulated genes in the iWAT of mice
upon HFD feeding (left). GO analysis of the overlapped 70 genes (right). B: Heatmap depicting the
expression profile of indicated genes involved in glucose uptake and de novo FA synthesis in the
iWAT of Control diet (CD)-fed and HFD-fed mice based on the analysis of the RNA-seq data
reported by Tiziana Caputo et al. (GSE132885).
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Supplementary Figure 9. Ablation of adipocyte TR worsens HFD-induced metabolic defects.
A: Heatmap depicting the expression profile of ChREBP, GLUT4, genes involved in FA anabolism
and catabolism in the iWAT from Floxed and ATRBKO mice after HFD feeding. B: Relative mRNA
expression of UCP1 in the iWAT of HFD-fed Floxed and ATRBKO mice (rn = 4-5). C: Schematic
model of the role of T3 on glucose and lipid metabolism in adipocytes. T3 action: #, TRB-dependent;
&, ChREBP-dependent. Data are presented as mean = SEM. Statistical significance was determined

by Student’s #-test for panel B. *p < 0.05, **p < 0.01 and ***p < 0.001. NS, not significant.




