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1. Supplementary information 

 

1A. Structural equation modelling 

 

Factor analysis assumes that the correlation between observed indicators (in this case, the MetS 

components) to be due to one or more unmeasured ‘latent’ constructs or factors. Exploratory 

factor analysis investigates how many latent constructs these indicators can be condensed into. 

In a path model a hypothesized structural model reflecting relationships between latent factors 

and their indicators can be visualized. This model can then be tested mathematically with a 

confirmatory factor analysis, which tests how well this model fits the data and can compute 

factor loadings (standardized regression coefficients representing the variance of an indicator 

explained by the latent factor). 

 

1B. Is metabolic syndrome truly a syndrome? 

 

Whether MetS is truly a syndrome, or rather an observed clustering of independent risk factors 

is under debate. A syndrome is ‘a group of signs and symptoms that occur together and 

characterize a particular abnormality or condition’71. The former, symptoms that occur 

together, is true for MetS. Yet, they do not characterize one particular abnormality.72 Also, we 

have shown that the genetic overlap between these drivers of MetS is modest, and their 

functional effects show different hierarchy. However, the PRS results presented in Figure 5 

support the idea that the whole is greater than the sum of its parts. Furthermore, using the term 

MetS raises awareness for the comorbidity between the individual symptoms. The syndrome 

also has clinical implications, as the presence of one risk factor warrants the investigation to 

other risk factors, and emphasizes the need to properly control metabolic disturbances through 

life style changes and drug treatment.  
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2. Supplementary methods 

 

2A. GWAS summary statistics of indicator phenotypes included in this study 

 

Publicly available GWAS summary statistics of fasting glucose (FG), high-density lipoprotein 

cholesterol (HDL-C), systolic blood pressure (SBP), triglycerides (TG) and waist 

circumference (WC) were used. Since SBP and DBP are highly correlated genetically (rG 0.81), 

we choose to include only SBP and not both SBP and DBP.32  

 

Fasting glucose 

 

Fasting glucose (FG) was measured in 46,186 nondiabetic participants of European descent in 

a study by Dupuis et al.1 Individuals with a fasting glucose ≥7 mmol/l, with known diabetes or 

on anti-diabetic treatment were excluded. Fasting glucose was measured from whole blood, 

serum or plasma, or a combination of those. Genetic association analyses were corrected for 

sex, age, study site (if applicable), geographical covariates (if applicable) and age squared (if 

applicable).  

 

HDL-C and triglycerides 

 

Both high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) were measured in a 

study by Teslovich et al., in 99,000 and 96,598 European individuals, respectively.2 Individuals 

that were on lipid-lowering therapy were excluded. Genetic association analyses were 

corrected for sex, age and age squared. Additional covariates were added on a per-cohort basis.  

 

Systolic blood pressure and waist circumference 

 

The GWAS on systolic blood pressure (SBP) and waist circumference (WC) were done in UK 

Biobank by Watanabe et al. on 361,402 and 385,932 European individuals, respectively.3 

Genetic association analyses were corrected for age, sex, the first 20 principal components, 

array, assessment centre, and Townsend deprivation index (a proxy for socioeconomic status).  
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In the first stage, the genetic covariance matrix, derived from LDSC, and sampling matrix for 

the five MetS components were estimated in genomic SEM. Quality control for this step 

consisted of removing SNPs with a minor allele frequency (MAF) <1% (when available), 

INFO-score <0.9 (when available), SNPs from the MHC region, and SNPs not present in 

HapMap3. MAF and INFO-scores were not always available in the individual GWAS summary 

statistics, but filtering SNPs to HapMap3 should ensure a set of relatively common SNPs of 

good quality. 

 

First, an exploratory factor analysis (EFA) was performed to investigate how many factors 

were needed to describe the observed genetic covariance matrix between the five MetS 

components. For this EFA, promax rotation was used in the R factanal package4. A scree plot 

was generated with the R nFactors package.5 As a 1-factor model was suggested, a 

confirmatory factor analysis (CFA) was run in genomic SEM to establish how well this 1-factor 

model fitted the data, using the default diagonally weighted least square estimation. Model fit, 

which evaluates to which extend the model implied covariance matrix approximates the 

empirical, observed covariance matrix, is considered good with CFI values >0.95.6 

Furthermore, SRMR values <0.10 are considered acceptable fit and <0.05 good fit.7 

 

2B. Cross-trait genetic correlations 

 

Genetic correlations (rG) between 1) the MetS components, 2) the MetS factor and the largest 

GWAS on MetS by Lind15, 3) the MetS factor and diseases assumed to be phenotypically 

associated with MetS in literature, and 4) the MetS factor and a broad spectrum of diseases that 

were selected to reflect human health in a broad sense were estimated with LDSC.20 Studies 

with a heritability z-score <4 (calculated as LDSC-derived h2 divided by SE) were removed, 

as those are considered too noisy to generate robust genetic correlations (Supplementary Table 

2).21 LD scores from the European cohort of the 1000 Genomes study Phase 3 (URLS) were 

used for analyses with LDSC and genomic SEM (see below). 

 

2C. Identifying independent and unique loci with FUMA 

 

The SNP2GENE function was used to identify near-independent (r2 < 0.6) significant (P ≤ 5 x 

10−8) SNPs, as well as independent (r2 < 0.1) significant lead SNPs. All SNPs available in either 

the individual GWAS or the 1000 Genomes European reference panel that were in linkage 
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disequilibrium of r2 ≥ 0.6 with a lead SNP (candidate SNPs) were then selected for further 

annotation. Genomic risk loci were defined by assigning SNPs which are dependent on each 

other at r2 ≥ 0.1 to the same genomic risk locus, and subsequently merging any physically close 

SNPs (linkage disequilibrium (LD) blocks <250 kb apart) into one genomic risk locus. To 

identify overlapping and unique genomic risk loci, we overlayed the loci identified in the 

common factor MetS GWAS with those identified in the individual GWAS of the five MetS 

components.  

 

2D. Functional annotation (FUMA) 

 

SNP location and alleles were matched to databases that contain known functional annotations 

to assess consequences for these SNPs, including Combined Annotation (CADD) scores (a 

measure of deleteriousness)10, RegulomeDB scores (a score that indicates whether a SNP has 

a regulatory function, based on information from expression quantitative trait loci (eQTLs) and 

chromatin databases)11, ANNOVAR categories (which estimates the functional consequence 

of a SNP based on its position)12, and 15-core chromatin states (which represent the 

accessibility of genomic regions)13,14.  

 

FUMA maps candidate SNPs to genes in three ways: 1) positional mapping, which maps a SNP 

to its closest protein coding gene based on the physical distance according to the human 

reference assembly (GRCh37/hg19), 2) eQTL mapping, which maps SNPs to genes if it shows 

an association with the expression level of that gene, and 3) chromatin interaction mapping, 

which maps a SNP region to a gene if it has a 3D DNA-DNA interaction to that gene. eQTL 

mapping employed cis- and trans-eQTL (up to 1 Mb) data from tissues from default datasets, 

which includes all tissues from GTEx v815, the eQTL catalogue16, PsychENCODE17, van der 

Wijst et al. scRNA eQTLS18, DICE19, eQTLGen20, Blood eQTLs21, BIOS QTLs22, MuTHER23, 

xQTLServer24, CommonMind Consortium25, and BRAINEAC26. A false discovery rate of 0.05 

was used to define significant eQTL associations. FUMA uses chromatin interaction data from 

four datasets: Hi-C data from Schmitt et al.27, Giusti-Rodriguez et al. (see FUMA28 tutorial), 

PsychENCODE17, and FANTOM529. To further prioritize candidate genes, we filtered 

chromatin interaction annotations where the genomic risk locus overlapped with an enhancer 

and the gene-mapped region with a promoter (up to 250 bp upstream and 500 bp upstream from 

the transcription start site), predicted by the Roadmap Epigenomics Project14.   
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2E. Gene based analysis (MAGMA) 

 

MAGMA maps SNPs to protein-coding genes based on their genomic location (where a SNP 

is assigned to a gene if its location falls within the gene), and then jointly tests the association 

between SNPs within each gene and the MetS factor. Next, results from the gene-based 

analyses were used by MAGMA to conduct competitive gene-set analyses (testing for 

enrichment of genetic signal within gene sets relative to the other protein-coding genes in the 

data) in gene sets from MsigDB v6.2.30,31 To identify independently associated gene sets, a 

conditional gene-set analysis was performed. First, a gene-set analysis was run while 

conditioning on the most significant gene set. The remaining significant gene sets where 

subsequently conditioned on the most significant gene set within these resulting gene sets, until 

only one significant gene set was left. Finally, gene-property analyses (similar to gene-set 

analysis, but instead of a binary variable indicating whether a gene is part of a gene set, it uses 

a continuous variable representing gene expression values in a specific tissue or cell type) were 

used to test whether 54 tissue specific differential gene expression levels from GTeX v815 were 

predictive of associations with the MetS factor. The significance threshold for the number of 

genes, gene sets, or tissues tested was P < 0.05/17,706 genes = 2.82e-6, P < 0.05/15,481 gene 

sets = 3.23-06, and P < 0.05/54 detailed tissues = 9.26e-4, respectively. 

 

2F. Cell type analyses 

 

FUMA uses the MAGMA gene-property analysis to test cell-type specificity. Two cell type 

analyses were run, one with all available mouse tissue cells (n = 805) in FUMA and one with 

all available human brain tissue cells (n = 255) (all tissues from Mouse Cell Atlas32 were used; 

if a tissue was missing from Mouse Cell Atlas but was available in another dataset, the largest 

available sample was selected). Per dataset and within dataset conditional analyses were run, 

but because different groups of datasets were analysed separately, no cross datasets conditional 

analysis was performed. Cell types showed significant enrichment at P < 0.05/805 = 6.21e-05 

for mouse cell type analyses, and P < 0.05/255 = 1.96e-4 for human brain cell type analyses. 

 

Cell types included in mouse cell type specific analyses 

GSE98816_Mouse_Brain_Vascular, GSE99235_Mouse_Lung_Vascular, 

MouseCellAtlas_all, TabulaMuris_FACS_Aorta, TabulaMuris_FACS_Diaphragm, 

TabulaMuris_FACS_Fat, TabulaMuris_FACS_Heart, TabulaMuris_FACS_Large_Intestine, 
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TabulaMuris_FACS_Skin, TabulaMuris_FACS_Thymus, TabulaMuris_droplet_Trachea (see 

https://fuma.ctglab.nl/tutorial#datasets for references). 

 

Cell types included in Human brain cell type analysis: 

PsychENCODE_Developmental, PsychENCODE_Adult, Allen_Human_LGN_level1, 

Allen_Human_LGN_level2, Allen_Human_MTG_level1, Allen_Human_MTG_level2, 

DroNc_Human_Hippocampus, GSE104276_Human_Prefrontal_cortex_per_ages, 

GSE67835_Human_Cortex, Linnarsson_GSE101601_Human_Temporal_cortex, 

Linnarsson_GSE76381_Human_Midbrain (see https://fuma.ctglab.nl/tutorial#datasets for 

references). 

 

2G. Correcting for sample overlap for PRS analysis 

 

EraSOR uses the degree of sample overlap estimated from the LDSC intercept to correct 

summary statistics of base data for sample overlap with target data. EraSOR requires summary 

statistics of the target samples which were generated by running a GWAS on FG, HDL-C, and 

TG in the FHS samples with PLINK2 using cleaned, called, genotyped data (Supplementary 

Note).33,34 Covariates used were sex, age, and age2 for FG, and sex, age, age2, and the first 20 

principal components for HDL-C and TG, mirroring covariates used in the original GWAS.1,2 

The MetS factor GWAS was rerun for PRS prediction purposes using the adjusted summary 

statistics for FG, HDL-C, and TG, and non-adjusted summary statistics for SBP and WC. 

 

2H. Framingham Heart Study quality control 

 

The FHS is a longitudinal community-based cohort study, within which data have been 

collected on a range of cardiovascular diseases and risk factor as well as genetic data. Our 

target sample for polygenic prediction was FHS second (‘offspring’, recruited between 1971 

and 1975) and third generation (recruited between 2002 and 2005) subjects.24,25 Genotyping in 

FHS was done with Affymetrix 500k array.  Quality control with PLINK33,34 consisted of 

removing variants with a minor allele frequency <0.05, missingness >0.1 and deviation of 

Hardy-Weinberg equilibrium of P <1e-6, and samples with missingness >0.1, heterozygosity 

coefficients of >3SD from the mean, and discordant sex. One of each pair of first- or second-

degree relatives (𝜋ො  >0.125) was removed. We extracted only individuals that clustered together 

with Europeans from 1000 Genomes in an MDS plot.8 Finally, we selected samples that had 
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measurements of FG, HDL-C, TG, SBP, or WC (measured during abdominal CT). After 

quality control, 371,325 variants and 2,095 samples were available for analysis. Individuals on 

glucose lowering medication (n = 102) were removed for FG analyses, individuals on lipid 

lowering medication (n = 268) were removed for HDL-C and TG analyses, and individuals on 

blood pressure lowering medication (n = 200) were removed for SBP analyses. MetS was 

defined as 3/5 of hypertension (RR ≥ 130 mmHg (systolic) or antihypertensive treatment), 

elevated waist circumference (women ≥ 80 cm and men ≥ 94 cm), elevated triglycerides (≥ 

150 mg/dl or lipid lowering treatment), reduced HDL-C (≤ 50 mg/dl in women and ≤ 40 mg/dl 

in men or lipid lowering treatment), and elevated fasting glucose (≥ 100 mg/dl or glucose 

lowering treatment).35 For MetS prediction, only samples with non-missing information on 

indicator phenotypes were used. Per phenotype sample size was 1,816 for FG, 1,825 for HDL-

C, 1,891 for SBP, 1,812 for TG, 748 for WC, and 666 for MetS (254 cases and 412 controls). 

 

2I. Drug gene set analysis 

 

To identify drugs associated with MetS that may be candidates for treatment, genetically 

informed drug repurposing was performed drug-gene set analysis via the DRUGSETS software 

pipeline36. DRUGSETS tests drug-phenotype associations using competitive gene-set analysis 

in MAGMA37. Gene sets are created for every drug (n = 1150) using drug gene targets and 

interactions gathered from the Clue Repurposing Hub38 and the Drug Gene Interaction 

database39 (DGIdb). Significant drugs are tested while conditioning on all drug target genes to 

ensure that associations are driven by effects unique to each drug pathway. Additionally, 

several types of drug groups, namely Anatomical Therapeutic Classification (ATC) III codes 

(n = 85), clinical indications (i.e., the disease/disorder that a drug is approved to treat; n = 118) 

and mechanism of action categories (n = 79) were tested for association with the phenotype 

using a modified multiple linear regression model. The linear model assesses if the MAGMA 

Z statistic is higher for drugs in a group versus all drugs not in that group, while accounting for 

the covariance due to overlapping genes and drugs. This test was performed for each drug 

group, and Bonferroni correction was used to correct for the number of drugs groups in each 

category. Drugs showed enrichment at P < 4.35e-05 (0.05/1150), drugs from ATC III codes at 

P < 5.10e-4 (0.05/89), from clinical indication at P < 4.24e-4 (0.05/118) and from mechanism 

of action at P < 6.33e-4 (0.05/79). For a full overview of DRUGSETS and methods see36. 
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3. Supplementary results 

 

3A. Common factor GWAS without WC 

 

Running a common factor GWAS without WC resulted in 35 genomic risk loci (21 (60%) 

overlap with genomic risk loci significant for MetS factor), 112 significantly mapped genes by 

MAGMA (57 (51%) overlap with MetS factor), 26 significantly associated gene sets (8 (31%) 

overlap with MetS factor), three enriched tissues (none overlap with MetS factor), two enriched 

mouse cell types (none overlap with MetS factor) and four enriched human brain cell types 

(one (25%) overlaps with MetS factor) (Supplementary Table 20-25). LDSC derived SNP 

heritability was 0.12 (0.01) and genetic correlation (rG) with MetS factor GWAS was 0.74 (SE 

0.013, P 0). 

 

 

3B. Additional drug gene set (repurposing) results 

 

There is significant enrichment of plain lipid modifying agents (ATC code C10A; P = 5.28e-

10), and antimycotics for systemic use (J02A; P = 0.0002) (Supplementary Table 30). 

Furthermore, drugs clinically indicated for hypercholesterolemia (P = 0.0001) show 

enrichment (Supplementary Table 31), as well as the mechanism of action categories of HMG-

CoA reductase inhibitors (i.e., statins; P = 2.97e-06), and peroxisome proliferator-activated 

receptor agonists (P = 7.18e-06) (Supplementary Table 32). 
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4. Supplementary figures 

 

4A. Exploratory factor analysis scree plot (R nFactors package) 

 

The suggested number of factors to retain was one with each of the methods (see legend). 
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4B. MAGMA gene-based Manhattan plot.  

 

 

 

Genes were significant at P < 0.05/17,706 (number of tested genes) = 2.824e-6. The red line indicates 

Bonferroni-corrected significance, shown here as the negative log10-transformed P value on the y axis. The 

top 100 most significant genes are labelled. This plot is generated by FUMA v.1.3.7.28 

 

4C and D. SNP-based (4C) and gene-based (4D) QQ plots.  

 

4C       4D 

QQ plots display the expected –log10 transformed P-values on the x-axis and the observed –log10 transformed 

P-values on the y-axis. 
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