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1. Supplementary information

1A. Structural equation modelling

Factor analysis assumes that the correlation between observed indicators (in this case, the MetS
components) to be due to one or more unmeasured ‘latent’ constructs or factors. Exploratory
factor analysis investigates how many latent constructs these indicators can be condensed into.
In a path model a hypothesized structural model reflecting relationships between latent factors
and their indicators can be visualized. This model can then be tested mathematically with a
confirmatory factor analysis, which tests how well this model fits the data and can compute
factor loadings (standardized regression coefficients representing the variance of an indicator

explained by the latent factor).

1B. Is metabolic syndrome truly a syndrome?

Whether MetS is truly a syndrome, or rather an observed clustering of independent risk factors
is under debate. A syndrome is ‘a group of signs and symptoms that occur together and
characterize a particular abnormality or condition’’!. The former, symptoms that occur
together, is true for MetS. Yet, they do not characterize one particular abnormality.” Also, we
have shown that the genetic overlap between these drivers of MetS is modest, and their
functional effects show different hierarchy. However, the PRS results presented in Figure 5
support the idea that the whole is greater than the sum of its parts. Furthermore, using the term
MetS raises awareness for the comorbidity between the individual symptoms. The syndrome
also has clinical implications, as the presence of one risk factor warrants the investigation to
other risk factors, and emphasizes the need to properly control metabolic disturbances through

life style changes and drug treatment.



2. Supplementary methods

2A. GWAS summary statistics of indicator phenotypes included in this study

Publicly available GWAS summary statistics of fasting glucose (FG), high-density lipoprotein
cholesterol (HDL-C), systolic blood pressure (SBP), triglycerides (TG) and waist
circumference (WC) were used. Since SBP and DBP are highly correlated genetically (rg 0.81),
we choose to include only SBP and not both SBP and DBP.*

Fasting glucose

Fasting glucose (FG) was measured in 46,186 nondiabetic participants of European descent in
a study by Dupuis et al.! Individuals with a fasting glucose >7 mmol/l, with known diabetes or
on anti-diabetic treatment were excluded. Fasting glucose was measured from whole blood,
serum or plasma, or a combination of those. Genetic association analyses were corrected for
sex, age, study site (if applicable), geographical covariates (if applicable) and age squared (if
applicable).

HDL-C and triglycerides

Both high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) were measured in a
study by Teslovich et al., in 99,000 and 96,598 European individuals, respectively.? Individuals
that were on lipid-lowering therapy were excluded. Genetic association analyses were

corrected for sex, age and age squared. Additional covariates were added on a per-cohort basis.

Systolic blood pressure and waist circumference

The GWAS on systolic blood pressure (SBP) and waist circumference (WC) were done in UK
Biobank by Watanabe et al. on 361,402 and 385,932 European individuals, respectively.?
Genetic association analyses were corrected for age, sex, the first 20 principal components,

array, assessment centre, and Townsend deprivation index (a proxy for socioeconomic status).



In the first stage, the genetic covariance matrix, derived from LDSC, and sampling matrix for
the five MetS components were estimated in genomic SEM. Quality control for this step
consisted of removing SNPs with a minor allele frequency (MAF) <1% (when available),
INFO-score <0.9 (when available), SNPs from the MHC region, and SNPs not present in
HapMap3. MAF and INFO-scores were not always available in the individual GWAS summary
statistics, but filtering SNPs to HapMap3 should ensure a set of relatively common SNPs of

good quality.

First, an exploratory factor analysis (EFA) was performed to investigate how many factors
were needed to describe the observed genetic covariance matrix between the five MetS
components. For this EFA, promax rotation was used in the R factanal package®*. A scree plot
was generated with the R nFactors package.” As a l-factor model was suggested, a
confirmatory factor analysis (CFA) was run in genomic SEM to establish how well this 1-factor
model fitted the data, using the default diagonally weighted least square estimation. Model fit,
which evaluates to which extend the model implied covariance matrix approximates the
empirical, observed covariance matrix, is considered good with CFI values >0.95.6

Furthermore, SRMR values <0.10 are considered acceptable fit and <0.05 good fit.”

2B. Cross-trait genetic correlations

Genetic correlations (rg) between 1) the MetS components, 2) the MetS factor and the largest
GWAS on MetS by Lind'®, 3) the MetS factor and diseases assumed to be phenotypically
associated with MetS in literature, and 4) the MetS factor and a broad spectrum of diseases that
were selected to reflect human health in a broad sense were estimated with LDSC.%° Studies
with a heritability z-score <4 (calculated as LDSC-derived h? divided by SE) were removed,
as those are considered too noisy to generate robust genetic correlations (Supplementary Table
2).2! LD scores from the European cohort of the 1000 Genomes study Phase 3 (URLS) were
used for analyses with LDSC and genomic SEM (see below).

2C. Identifying independent and unique loci with FUMA
The SNP2GENE function was used to identify near-independent (r> < 0.6) significant (P <5 x

107®) SNPs, as well as independent (r* < 0.1) significant lead SNPs. All SNPs available in either
the individual GWAS or the 1000 Genomes European reference panel that were in linkage



disequilibrium of 2> 0.6 with a lead SNP (candidate SNPs) were then selected for further
annotation. Genomic risk loci were defined by assigning SNPs which are dependent on each
other at r2 > 0.1 to the same genomic risk locus, and subsequently merging any physically close
SNPs (linkage disequilibrium (LD) blocks <250 kb apart) into one genomic risk locus. To
identify overlapping and unique genomic risk loci, we overlayed the loci identified in the
common factor MetS GWAS with those identified in the individual GWAS of the five MetS

components.

2D. Functional annotation (FUMA)

SNP location and alleles were matched to databases that contain known functional annotations
to assess consequences for these SNPs, including Combined Annotation (CADD) scores (a
measure of deleteriousness)!'’, RegulomeDB scores (a score that indicates whether a SNP has
aregulatory function, based on information from expression quantitative trait loci (eQTLs) and
chromatin databases)'!, ANNOVAR categories (which estimates the functional consequence
of a SNP based on its position)'?, and 15-core chromatin states (which represent the

accessibility of genomic regions)!>!4.

FUMA maps candidate SNPs to genes in three ways: 1) positional mapping, which maps a SNP
to its closest protein coding gene based on the physical distance according to the human
reference assembly (GRCh37/hg19), 2) eQTL mapping, which maps SNPs to genes if it shows
an association with the expression level of that gene, and 3) chromatin interaction mapping,
which maps a SNP region to a gene if it has a 3D DNA-DNA interaction to that gene. eQTL
mapping employed cis- and trans-eQTL (up to 1 Mb) data from tissues from default datasets,
which includes all tissues from GTEx v8'°, the eQTL catalogue'®, PsychENCODE'", van der
Wijst et al. scRNA eQTLS'®, DICE", eQTLGen?°, Blood eQTLs?', BIOS QTLs*?, MuTHER?,
xQTLServer?*, CommonMind Consortium?, and BRAINEAC?S. A false discovery rate of 0.05
was used to define significant eQTL associations. FUMA uses chromatin interaction data from
four datasets: Hi-C data from Schmitt et al.?’, Giusti-Rodriguez et al. (see FUMA?® tutorial),
PsychENCODE!", and FANTOMS5%. To further prioritize candidate genes, we filtered
chromatin interaction annotations where the genomic risk locus overlapped with an enhancer
and the gene-mapped region with a promoter (up to 250 bp upstream and 500 bp upstream from

the transcription start site), predicted by the Roadmap Epigenomics Project!*.



2E. Gene based analysis (MAGMA)

MAGMA maps SNPs to protein-coding genes based on their genomic location (where a SNP
is assigned to a gene if its location falls within the gene), and then jointly tests the association
between SNPs within each gene and the MetS factor. Next, results from the gene-based
analyses were used by MAGMA to conduct competitive gene-set analyses (testing for
enrichment of genetic signal within gene sets relative to the other protein-coding genes in the
data) in gene sets from MsigDB v6.2.3%3! To identify independently associated gene sets, a
conditional gene-set analysis was performed. First, a gene-set analysis was run while
conditioning on the most significant gene set. The remaining significant gene sets where
subsequently conditioned on the most significant gene set within these resulting gene sets, until
only one significant gene set was left. Finally, gene-property analyses (similar to gene-set
analysis, but instead of a binary variable indicating whether a gene is part of a gene set, it uses
a continuous variable representing gene expression values in a specific tissue or cell type) were
used to test whether 54 tissue specific differential gene expression levels from GTeX v8'° were
predictive of associations with the MetS factor. The significance threshold for the number of
genes, gene sets, or tissues tested was P < 0.05/17,706 genes = 2.82¢-6, P < 0.05/15,481 gene
sets = 3.23-06, and P < 0.05/54 detailed tissues = 9.26e-4, respectively.

2F. Cell type analyses

FUMA uses the MAGMA gene-property analysis to test cell-type specificity. Two cell type
analyses were run, one with all available mouse tissue cells (n = 805) in FUMA and one with
all available human brain tissue cells (n = 255) (all tissues from Mouse Cell Atlas*? were used;
if a tissue was missing from Mouse Cell Atlas but was available in another dataset, the largest
available sample was selected). Per dataset and within dataset conditional analyses were run,
but because different groups of datasets were analysed separately, no cross datasets conditional
analysis was performed. Cell types showed significant enrichment at P < 0.05/805 = 6.21e-05
for mouse cell type analyses, and P < 0.05/255 = 1.96e-4 for human brain cell type analyses.

Cell types included in mouse cell type specific analyses

GSE98816 _Mouse Brain Vascular, GSE99235 Mouse Lung Vascular,
MouseCellAtlas_all, TabulaMuris FACS Aorta, TabulaMuris FACS Diaphragm,
TabulaMuris FACS Fat, TabulaMuris FACS Heart, TabulaMuris FACS Large Intestine,



TabulaMuris FACS_Skin, TabulaMuris FACS Thymus, TabulaMuris_droplet Trachea (see

https://fuma.ctglab.nl/tutorial#datasets for references).

Cell types included in Human brain cell type analysis:

PsychENCODE Developmental, PsychENCODE Adult, Allen. Human LGN _levell,
Allen Human LGN level2, Allen Human MTG levell, Allen Human MTG level2,
DroNc_Human Hippocampus, GSE104276 Human_Prefrontal cortex per ages,
GSE67835 Human_Cortex, Linnarsson GSE101601 Human Temporal cortex,
Linnarsson_ GSE76381 Human_ Midbrain (see https://fuma.ctglab.nl/tutorial#datasets for

references).

2G. Correcting for sample overlap for PRS analysis

EraSOR uses the degree of sample overlap estimated from the LDSC intercept to correct
summary statistics of base data for sample overlap with target data. EraSOR requires summary
statistics of the target samples which were generated by running a GWAS on FG, HDL-C, and
TG in the FHS samples with PLINK?2 using cleaned, called, genotyped data (Supplementary
Note).?-* Covariates used were sex, age, and age® for FG, and sex, age, age?, and the first 20
principal components for HDL-C and TG, mirroring covariates used in the original GWAS. '
The MetS factor GWAS was rerun for PRS prediction purposes using the adjusted summary
statistics for FG, HDL-C, and TG, and non-adjusted summary statistics for SBP and WC.

2H. Framingham Heart Study quality control

The FHS is a longitudinal community-based cohort study, within which data have been
collected on a range of cardiovascular diseases and risk factor as well as genetic data. Our
target sample for polygenic prediction was FHS second (‘offspring’, recruited between 1971
and 1975) and third generation (recruited between 2002 and 2005) subjects.?*?> Genotyping in
FHS was done with Affymetrix 500k array. Quality control with PLINK**3* consisted of
removing variants with a minor allele frequency <0.05, missingness >0.1 and deviation of
Hardy-Weinberg equilibrium of P <le-6, and samples with missingness >0.1, heterozygosity
coefficients of >3SD from the mean, and discordant sex. One of each pair of first- or second-
degree relatives (77 >0.125) was removed. We extracted only individuals that clustered together

with Europeans from 1000 Genomes in an MDS plot.® Finally, we selected samples that had



measurements of FG, HDL-C, TG, SBP, or WC (measured during abdominal CT). After
quality control, 371,325 variants and 2,095 samples were available for analysis. Individuals on
glucose lowering medication (n = 102) were removed for FG analyses, individuals on lipid
lowering medication (n = 268) were removed for HDL-C and TG analyses, and individuals on
blood pressure lowering medication (n = 200) were removed for SBP analyses. MetS was
defined as 3/5 of hypertension (RR > 130 mmHg (systolic) or antihypertensive treatment),
elevated waist circumference (women = 80 cm and men = 94 cm), elevated triglycerides (=
150 mg/dl or lipid lowering treatment), reduced HDL-C (< 50 mg/dl in women and < 40 mg/dl
in men or lipid lowering treatment), and elevated fasting glucose (= 100 mg/dl or glucose
lowering treatment).>> For MetS prediction, only samples with non-missing information on
indicator phenotypes were used. Per phenotype sample size was 1,816 for FG, 1,825 for HDL-
C, 1,891 for SBP, 1,812 for TG, 748 for WC, and 666 for MetS (254 cases and 412 controls).

21. Drug gene set analysis

To identify drugs associated with MetS that may be candidates for treatment, genetically
informed drug repurposing was performed drug-gene set analysis via the DRUGSETS software
pipeline*®. DRUGSETS tests drug-phenotype associations using competitive gene-set analysis
in MAGMA?". Gene sets are created for every drug (n = 1150) using drug gene targets and
interactions gathered from the Clue Repurposing Hub®® and the Drug Gene Interaction
database® (DGIdb). Significant drugs are tested while conditioning on all drug target genes to
ensure that associations are driven by effects unique to each drug pathway. Additionally,
several types of drug groups, namely Anatomical Therapeutic Classification (ATC) III codes
(n = 85), clinical indications (i.e., the disease/disorder that a drug is approved to treat; n = 118)
and mechanism of action categories (n = 79) were tested for association with the phenotype
using a modified multiple linear regression model. The linear model assesses if the MAGMA
Z statistic is higher for drugs in a group versus all drugs not in that group, while accounting for
the covariance due to overlapping genes and drugs. This test was performed for each drug
group, and Bonferroni correction was used to correct for the number of drugs groups in each
category. Drugs showed enrichment at P < 4.35¢-05 (0.05/1150), drugs from ATC III codes at
P <5.10e-4 (0.05/89), from clinical indication at P <4.24e-4 (0.05/118) and from mechanism
of action at P < 6.33e-4 (0.05/79). For a full overview of DRUGSETS and methods see?®.



3. Supplementary results

3A. Common factor GWAS without WC

Running a common factor GWAS without WC resulted in 35 genomic risk loci (21 (60%)
overlap with genomic risk loci significant for MetS factor), 112 significantly mapped genes by
MAGMA (57 (51%) overlap with MetS factor), 26 significantly associated gene sets (8 (31%)
overlap with MetS factor), three enriched tissues (none overlap with MetS factor), two enriched
mouse cell types (none overlap with MetS factor) and four enriched human brain cell types
(one (25%) overlaps with MetS factor) (Supplementary Table 20-25). LDSC derived SNP
heritability was 0.12 (0.01) and genetic correlation (rg) with MetS factor GWAS was 0.74 (SE
0.013, P 0).

3B. Additional drug gene set (repurposing) results

There is significant enrichment of plain lipid modifying agents (ATC code C10A; P = 5.28e-
10), and antimycotics for systemic use (JO2A; P = 0.0002) (Supplementary Table 30).
Furthermore, drugs clinically indicated for hypercholesterolemia (P = 0.0001) show
enrichment (Supplementary Table 31), as well as the mechanism of action categories of HMG-
CoA reductase inhibitors (i.e., statins; P = 2.97e-06), and peroxisome proliferator-activated

receptor agonists (P = 7.18e-06) (Supplementary Table 32).
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4. Supplementary figures

4A. Exploratory factor analysis scree plot (R nFactors package)
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4B. MAGMA gene-based Manhattan plot.
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4C and D. SNP-based (4C) and gene-based (4D) QQ plots.
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