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Supplemental Figure 1. Method of doublet detection and exclusion.

(A, B) UMAP plot showing the expression of islet cell hormones in single cells (A), compared with cell
cluster identification (B). (C) Estimation of doublet cell scores for single cells after removal of
previously identified doublets.
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Supplemental Figure 2. Body weight, blood glucose and plasma insulin levels of OB and NZO mice
used for scRNA-seq analysis.

(A) Depiction of experimental setup. From 5 to 18 weeks of age, male OB and NZO mice were fed
carbohydrate-free high-fat diet (-CH). They were then subdivided into two groups fed either -CH or a
diabetogenic, carbohydrate-containing high-fat diet (+CH) for two additional days before islet isolation.
(B, C) Body weights (B) and blood glucose levels (C) of -CH-fed OB and NZO animals between 5 and
18 weeks of age. (D-F) Body weights (D), blood glucose (E) and plasma insulin levels (F) of 18-week
old OB and NZO mice fed -CH or +CH for two additional days. Data are presented as mean £ SEM, n
=3, *p < 0.05 by two-way ANOVA with Tukey’s multiple comparisons test.
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Supplemental Figure 3. Differences in endocrine islet cell composition of diabetes-resistant OB
and diabetes-prone NZO mice.

(A) Pancreatic sections of 18-week old OB and NZO mice fed -CH or +CH diet for two days were co-
stained for insulin (gray, B-cells), glucagon (green, a-cells), and somatostatin (magenta, &-cells).
Representative images of n = 3. Scale bar, 50 um. (B-D) Quantification of g-cell (B), a-cell (C), and 8-
cell (D) percentage per total number of islet nuclei. Data are represented as mean £ SEM, n=4, *p <
0.05, *** p < 0.001 by two-way ANOVA with Tukey’s multiple comparisons test.
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Supplemental Figure 4. Average number of expressed genes per experimental condition and f-cell
clusters of OB and NZO mice with further characterization of proliferative B-cell clusters.

(A, B) The kernel density estimate fit displays the distribution of the number of expressed genes in islet
cells from the four indicated experimental groups (A) or in the six B-cell clusters found in OB and NZO
islets (B). Each black dot represents data from one single cell. The violin interior depicts median, quartile
and whisker values. (C) Dot plot representing the number of cells (dot size) and mean gene expression
levels in the Betal to BetaP clusters. The proliferative B-cell cluster BetaP was identified based on
expression of the proliferation marker gene Mki67 and others. (D) UMAP plot showing the expression
of genes annotated to the cell cycle in OB and NZO islet cells. The colour code indicates classification
of genes by cell cycle phase (Gi-phase = gray; G2/M-phase = orange; S-phase = red). (E) Quantification
of BetaP cell cycle phase gene expression signature in the four experimental groups. Absolute numbers
of cells are shown in brackets inside the respective bars. In OB -CH islets, no BetaP cells were detected
(ND).
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Supplemental Figure 5. Identification of the most likely B-cell pseudotime lineage.

(A) Representative heatmaps of differentially expressed genes (DEGS) in 30 randomly selected f3-cells
from clusters Betal-4. Intra-cluster pre-sorting was achieved via 15 randomly selected, low or high
expressed DEGs from the Betal vs. Beta4 comparison. Two hypotheses (H1, H2) for possible
pseudotime lineages were tested. Order of genes (top to bottom) is by expression in Betal (low to high).
(B) The process in (A) was repeated 1000 times and the total number of genes correlating significantly
with pseudotime H1 or H2 was calculated. (C) Of the genes correlating significantly with H1 or H2,
trajectory H1 contains more genes with a high correlation coefficient (R?).
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Supplemental Figure 6. Gene expression changes along the principal OB and NZO f-cell

trajectories.

(A-D) Expression of the anti-apoptotic factor Tmbim4 (A), OST complex subunit Ddost (B), and
chaperones Calr (C) and Hspa5 (D) in OB versus NZO B-cells along the inferred trajectory. Dots
represent scaled expression levels of individual B-cells, colour-coded according to their cluster
allocation. Solid red lines depict fitted curves and dotted blue lines depict confidence intervals. (E)
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Topmost up- or downregulated genes along the Betal to Beta4 trajectory.
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Supplemental Figure 7. Immaturity score and cell surface marker gene expression

(A) Distribution of B-cell immaturity scores for B-cell clusters Betal-4. Cell scores were calculated by
comparing p-cell expression profiles to an independent data set of pB-cells during embryonic (E17.5 to
P0) to postnatal (P60) development. Black dots indicate the individual scores per single cell. (B) Mean
surface marker gene expression per single cell of B-cell clusters Betal-4. (C) Mean surface marker gene
expression per single cell separated into monohormonal (o-, 8-, y-) cells and sorted by experimental
groups.
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Supplemental Figure 8. Identification of unique Beta4 modules via comparison of DiffCoEx-

modules with WGCNA-modules.

(A) Screening of DiffCoEx-modules (from analysis comparing Betal-3 against Betad4) for Beta4-
specific modules. (B, C) Circos plots showing the top 25 differentially co-expressed genes of the Beta4-
specific modules M6 (B) and M10 (C) in Betal-3. Genes that are co-expressed are connected by a red
line. The degree of co-expression is reflected via the thickness of the line (thicker being a higher degree

of co-expression).
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Supplemental Figure 9. Cell-cell communication between BG and B-cells.

(A-D) DAPI- and BrdU-staining of serum-starved MING6 B-cells stimulated with FGF9 (A, C) and FGF1
(B, D) for 3 and 24 hours. (E) Dot plot representing the number of cells (dot size) and mean gene
expression levels of the 5-cell hormone Sst and its receptors (Sstr1-5) in the Betal-4 and Delta clusters.
Sstr4 was not detected. (F) Circle plot depicting potential intercellular communication (based on ligand-
receptor gene expression) in dual-hormonal BG cells and B-cell clusters Betal-4. Arrow directions are
from ligand to receptor. Non-unique interactions likely to occur between BG cells and all four j-cell
clusters are not shown.



