Supplementary Figures and Tables

Supplementary Figure 1. The mRNA expression level of *Nos3* and *Cnn1* in mouse aortas. Real-time qPCR data showing *Nos3* (A) gene expression in aortas from db/m^+ and db/db mice and *Cnn1* (B) gene expression in aortas from C57BL/6 mice subjected to 7-day treadmill exercise. EC+ indicates intact mouse aortas with endothelium, EC- indicates mouse aortas with endothelium denuded. *p<0.05 vs db/m^+ (EC+), unpaired two-tailed *t* test.

Supplementary Figure 2. The effect of Ad-KLF2 overexpression on the body weight, insulin sensitivity and lipid profile of *db/db* mice. Ad-KLF2 administration for 7 days to *db/db* mice does not affect body weight (A), insulin sensitivity indicated by Insulin Tolerance Test (B), total plasma cholesterol (C) and total plasma triacylglyceride levels (D).

Supplementary Figure 3. KLF2 overexpression increases levels of KLF2, eNOS and peNOS S1176. QPCR results showing Ad-KLF2 (A) and Ad-Cdh5-Klf2 (B) increase KLF2 mRNA level in mouse aortas from db/db mice. Summarized western blotting data showing Ad-KLF2 upregulates levels of p-eNOS S1176 (C), total eNOS (D) and KLF2 (E) in mouse aortas from db/db mice. Summarized data showing Ad-Cdh5-Klf2 decreases the level of tyrosine nitrated proteins in aortas from db/db mice (F). **p<0.001 vs Ad-GFP, *p<0.05 vs Ad-GFP, unpaired two-tailed *t* test.

Supplementary Figure 4. KLF2 increases eNOS dimerization and Akt inhibitor Triciribine abolished KLF2-induced p-Akt and p-eNOS. (A) Ad-KLF2-shRNA (Ad-shKLF2) abolished simvastatin-induced expression of KLF2 in HAECs. (B) Ad-Klf2 increased level of eNOS monomer and dimer in HUVECs. (C) Triciribine (10 µM) treatment for 12 hours inhibited KLF2-induced p-Akt T308, p-Akt S473 and p-eNOS S1177 but not total Akt and eNOS.

Supplementary Figure 5. KLF2 upregulated mRNA and protein expression of GCH-1. The qPCR results (A) and western blotting data (B and C) showing KLF2 overexpression increased GCH-1 mRNA and protein expression in HUVECs. ** p< 0.01 vs Ad-GFP, Oneway ANOVA with Tukey's multiple comparison test. * p< 0.05 vs Ad-GFP, unpaired two-tailed *t* test. (D) The effect of KLF2 overexpression for 24 hours on levels of p-eNOS threonine 495 and p-PKC α/β threonine 638/641 in HUVECs.

Supplementary Figure 6. KLF2-induced eNOS dimerization and GCH1 mRNA expression were suppressed by Hsp90 inhibitor 17-AAG. Western blotting images (A) and summarized data (B) showing 17-AAG (1 μ M) treatment for 12 hours attenuated KLF2-induced eNOS dimer formation. ** p < 0.01 vs Ad-GFP+ Vehicle, # p < 0.05 vs Ad-KLF2+Vehicle, Two-way ANOVA with Tukey's multiple comparison test. (C) *GCH1* mRNA expression induced by KLF2 was inhibited by 17-AAG (1 μ M) treatment in HUVECs. * p < 0.01 vs Ad-GFP+ Vehicle, # p < 0.05 vs Ad-KLF2+Vehicle, Two-way ANOVA with Tukey's multiple comparison test.

Supplementary Figure 7. KLF2 increased the mRNA and protein level of Hsp90a and Hsp90 β but did not affect HSF1 mRNA level. The qPCR results showing KLF2 overexpression for 24- and 48-hours upregulated mRNA expression of *HSP90AA1* (**B**) and *HSP90AB1*(**C**) but did not change the mRNA expression of *HSF1*(**A**) and *HSP90B1* (**D**). ** p < 0.01 vs Ad-GFP, One-way ANOVA with Tukey's multiple comparison test. (**E**) Western blotting images showing KLF2 upregulated Hsp90a and Hsp90 β protein levels in HUVECs.

Supplementary Table 1

Gene name	Primer sequences	Species
Klf2	F: CTCAGCGAGCCTATCTTGCC	Mayaa
	R: CACGTTGTTTAGGTCCTCATCC	Mouse
Nos3	F: TGTGACCCTCACCGCTACAA	Mouso
	R: GCACAATCCAGGCCCAATC	Mouse
Gapdh	F: AGGTCGGTGTGAACGGATTTG	Mouso
	R: TGTAGACCATGTAGTTGAGGTCA	Wiouse
GAPDH	F: CCACTCCTCCACCTTTGAC	Human
OAI DII	R: ACCCTGTTGCTGTAGCCA	Tiuman
KLF2	F: CTACACCAAGAGTTCGCATCTG	Human
	R: CCGTGTGCTTTCGGTAGTG	Tumun
NOS3	F: TGATGGCGAAGCGAGTGAAG	Human
	R: ACTCATCCATACACAGGACCC	
PLCB2	F: ATCCGGGATACTCGCTTTGG	Human
	R: CACCACCGTGAGTGTCTTCAG	
PLCB3	F: TTGAGCGGTTCCTGAACAAG	Human
	R: CACTTCGTTGAGTCTCGGGT	
PLCB4	F: TATTCGGTCGGGAGCCATAC	Human
PLCD3	F: CCCAAGCIGAAIGCCGAGAA	Human
PLCG2		Human
INSR		Human
FLT1	P. TGGTTTGCTTGAGCTGTGTTC	Human
TEK	R: GGGGCACTGAATGGATGAAG	Human
ITGA3	R: CTGCCACCCATCATTGTTCA	Human
	F: CAGTGGAGCCGTGGTTTTG	
ITGA6	R: CCACCGCCACATCATAGCC	Human
ITGB4	F: GCAGCTTCCAAATCACAGAGG	
	R: CCAGATCATCGGACATGGAGTT	Human
ADCY4	F: ACCTGGCCCGAGAGATGAA	
	R: CAGCTCCTTAGGGGAACACTC	Human
RAPGEF3	F: CCTCTCCAACTCGGTGAAGC	Human
	R: CTGGCTGAACAACACGGTC	Human
AKT1	F: TCCTCCTCAAGAATGATGGCA	Human
	R: GTGCGTTCGATGACAGTGGT	Huillan
GCH1	F: CAGCACAATGTTGGGTGTGTT	Human
oem	R: AGTACGATCGGCAACCAACG	Tuman
HSF1	F: GCACATTCCATGCCCAAGTAT	Human
	R: GGCCTCTCGTCTATGCTCC	Tunnan
HSP90AA1	F: AGGAGGTTGAGACGTTCGC	Human
	R: AGAGTTCGATCTTGTTTGTTCGG	
HSP90AB1	F: CATCTCCATGATTGGGCAGTT	Human
	R: CTTTGACCCGCCTCTCTTCTA	
HSP90B1	F: CCAGTTTGGTGTCGGTTTCTAT	Human
	K: CIGGGTATCGTIGTIGTGTTTTG	

Supplementary Table 2

Target antigen	Vendor or Source	Catalog #	Working
Target antigen			concentration
GAPDH	Cell Signaling Technology	2118	WB (1:2000)
VI F2	Milliporo	00.820	WB (1:3000)
KLI ⁻ Z	Minipole	07-020	IHC (1:500)
aNOS	Cell Signaling Technology	9572	WB (1:2000)
enos			IP (1:100)
Hap00	lan00 Abaam ab1420		WB (1:1000)
115050	Abcalli	aU1427	IP (1:100)
p-eNOS S1177	BD transduction	612392	WB (1:1000)
p-eNOS S615	Millipore	07-561	WB (1:1000)
p-eNOS T495	Cell Signaling Technology	9574	WB (1:200)
p-Akt S473	Cell Signaling Technology	4060	WB (1:1000)
p-Akt T308	Cell Signaling Technology	9275	WB (1:1000)
Akt1	Cell Signaling Technology	2967	WB (1:1000)
GCH-1	Abcam	ab236387	WB (1:500)
p-PKC _{α/β} T638/641	Cell Signaling Technology	9375	WB (1:1000)
Hsp90a	Cell Signaling Technology	8165	WB (1:1000)
Hsp90β	Cell Signaling Technology	5087	WB (1:1000)
Insulin receptor β	Cell Signaling Technology	23413	WB (1:1000)
PLCB3	GeneTex, Inc	GTX111100	WB (1:1000)
PLCD3	GeneTex, Inc	GTX123172	WB (1:1000)
Tyrosine nitrated proteins	Sigma-Aldrich	05-233	WB (1:1000)