The Impact of Racial and Ethnic Health Disparities in Diabetes Management on Clinical Outcomes: A Reinforcement Learning Analysis of Health Inequity Among Youth and Young Adults in the SEARCH for Diabetes in Youth Study
Research Design and Methods: Longitudinal data from YYA diagnosed 2002-2005 in the SEARCH for Diabetes in Youth Study were analyzed. Based on self-reported race/ethnicity, YYA were classified as non-White race or Hispanic ethnicity (non-White subgroup) versus non-Hispanic White race (White subgroup). In the White versus non-White subgroups, propensity scores model estimated treatment regimens, including patterns of insulin modality, self-monitored glucose frequency, and continuous glucose monitoring use. An analysis based on policy evaluation technique in reinforcement learning estimated the effect of each treatment regimen on hemoglobin A1c (HbA1c) and diabetes complications for non-White YYA.
Results: The study included n=978 YYA. The sample was 47.5% female and77.5% non-Hispanic White, with mean age 12.8±2.4 years at diagnosis. The estimated population mean of longitudinal average HbA1c over visits was 9.2% and 8.2% for the non-White and White subgroup, respectively (difference=0.9%). Within the non-White subgroup, mean HbA1c across visits was estimated to decrease by 0.33% (95%CI: -0.45%, -0.21%) if these YYA received the distribution of diabetes treatment regimens of the White subgroup, explaining approximately 35% of the estimated difference between the two subgroups. The non-White subgroup was also estimated to have a lower risk of developing diabetic retinopathy, diabetic kidney disease, and peripheral neuropathy with the White youth treatment regimen distribution (p<0.05), although the low proportion of YYA who developed complications limited statistical power for risk estimations.
Conclusions: Mathematically modeling an equalized distribution of T1D self-management tools and technology accounted for part but not all disparities in glycemic control between non-White and White YYA, underscoring the complexity of race/ethnicity-based health inequity.