The Effect of Standard versus Longer Intestinal Bypass on GLP-1 Regulation and Glucose Metabolism in Patients with Type 2 Diabetes Undergoing Roux-en-Y Gastric Bypass. The Long-Limb study
Roux-en-Y gastric bypass (RYGB) characteristically enhances post-prandial levels of Glucagon-like peptide 1 (GLP-1), a mechanism that contributes to its profound glucose-lowering effects. This enhancement is thought to be triggered by bypass of food to the distal small intestine with higher densities of neuroendocrine L-cells. We hypothesised that if this is the predominant mechanism behind the enhanced secretion of GLP-1, a longer intestinal bypass would potentiate the post-prandial peak in GLP-1, translating into higher insulin secretion and thus additional improvements in glucose tolerance. To investigate this, we conducted a mechanistic study comparing two variants of RYGB that differ in the length of intestinal bypass.
Research Design and Methods
Fifty-three patients with type 2 diabetes and obesity were randomised to either ‘standard limb’ RYGB (50cm biliopancreatic limb) or ‘long limb’ RYGB (150cm biliopancreatic limb). They underwent measurements of GLP-1 and insulin secretion following a mixed meal and insulin sensitivity using euglycaemic hyperinsulinaemic clamps at baseline, 2 weeks and at 20% weight loss after surgery.
Results
Both groups exhibited enhancement in post-prandial GLP-1 secretion and improvements in glycaemia compared to baseline. There were no significant differences in post-prandial peak concentrations of GLP-1, time to peak, insulin secretion, and insulin sensitivity.
Conclusion
The findings of this study demonstrate that lengthening of the intestinal bypass in RYGB does not affect GLP-1 secretion. Thus, the characteristic enhancement of GLP-1 response after RYGB might not depend on delivery of nutrients to more distal intestinal segments.