	Disco (n=	wery set =271)	PETALS cohort (n=3,162)
	Unweighted	Weighted*	Unweighted
Age at delivery, y, mean ± SD	32.0 ± 4.6	30.0 ± 0.5	30.2 ± 5.3
Age at delivery, y, %			
<25	7.7	20.8 (12.6-28.9)	16.0
25-29	18.8	24.4 (17.7-31.2)	25.9
30-34	45.0	35.1 (28.9-41.3)	36.7
≥35	28.4	19.7 (15.3-24.1)	21.4
Race/ethnicity, %			
White	21.8	25.6 (19.5-31.6)	21.6
Hispanic	32.8	13.4 (6.6-20.3)	10.3
Black	9.2	15.6 (12.8-18.4)	23.1
Asian/Pacific Islander	30.3	41.3 (33.4-49.2)	41.8
Other/Unknown	5.9	4.1 (2.0-6.2)	3.2
Education, %			
High school or less	11.4	17.1 (9.6-24.6)	14.5
Some college	40.2	44.6 (35.7-53.5)	37.8
College graduate or above	48.3	38.3 (30.9-48.6)	47.6
Nulliparity, %	44.6	52.9 (44.6-61.3)	44.3
Pre-pregnancy BMI, kg/m ² , $\%^{\dagger}$			
Underweight/normal weight	19.8	32.0 (24.2-39.8)	38.4
Overweight	38.5	31.9 (23.4-40.3)	31.2
Obese	41.8	36.1 (27.5-44.6)	30.4
Chronic hypertension, %	5.9	3.8 (1.8-5.8)	4.4
Family history of diabetes, %	24.4	17.8 (12.3-23.7)	23.5
History of GDM, %	6.6	1.8 (0.8-2.9)	3.1
GDM, %	33.6	9.0 (6.3-11.8)	9.8

Table S1. Unweighted and weighted participant characteristics in the discovery set and unweighted participant characteristics in the PETALS cohort

BMI, body mass index.

* Descriptive statistics were derived by applying the sampling weight as described in the Methods section.

[†] Non-Asians were categorized as underweight (BMI <18.5 kg/m²), normal weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), and obese (\geq 30.0 kg/m²). Asians were categorized as underweight (<18.5 kg/m²), normal weight (18.5–22.9 kg/m²), overweight (23.0–27.4 kg/m²), and obese (\geq 27.5 kg/m²).

		Validation set 2						
	All	GDM	Non-GDM	D I *	All	GDM	Non-GDM	D 1 *
	(n=414)	(n=42)	(n=372)	P-value	(n=105)	(n=35)	(n=70)	P-value
Age at delivery, y, n (%)				0.59				0.28
<25	52 (12.6)	3 (7.1)	49 (13.2)		2 (1.9)	2 (5.7)	0 (0.0)	
25-29	108 (26.1)	10 (23.8)	98 (26.3)		5 (4.8)	1 (2.9)	4 (5.7)	
30-34	160 (38.6)	17 (40.5)	143 (38.4)		63 (60.0)	21 (60.0)	42 (60.0)	
≥35	94 (22.7)	12 (28.6)	82 (22.0)		35 (33.3)	11 (31.4)	24 (34.3)	
Race/ethnicity, n (%)				0.05				
White	105 (25.4)	9 (21.4)	96 (25.8)		15 (14.3)	5 (14.3)	10 (14.3)	1.00
Hispanic	105 (25.4)	8 (19.0)	97 (26.1)		27 (25.7)	9 (25.7)	18 (25.7)	
Black	99 (23.9)	7 (16.7)	92 (24.7)		3 (2.9)	1 (2.9)	2 (2.9)	
Asian/Pacific Islander	105 (25.4)	18 (42.9)	87 (23.4)		42 (40.0)	14 (40.0)	28 (40.0)	
Other/unknown					18 (17.1)	6 (17.1)	12 (17.1)	
Education, n (%)				0.80				0.08
High school or less	53 (12.8)	4 (9.5)	49 (13.2)		7 (6.7)	5 (14.3)	2 (2.9)	
Some college	151 (36.6)	16 (38.1)	135 (36.4)		17 (16.2)	6 (17.1)	11 (15.7)	
College graduate or above	209 (50.6)	22 (52.4)	187 (50.4)		81 (77.1)	24 (68.6)	57 (81.4)	
Nulliparity, n (%)	185 (44.7)	18 (42.9)	167 (44.9)	0.80	51 (48.6)	19 (54.3)	32 (45.7)	0.41
Pre-pregnancy BMI, kg/m ² , n (%) [†]				0.01				0.04
Underweight/normal weight	160 (38.6)	9 (21.4)	151 (40.6)		-	-	-	
Overweight	115 (27.8)	10 (23.8)	105 (28.2)		71 (67.6)	19 (54.3)	52 (74.3)	
Obese	139 (33.6)	23 (54.8)	116 (31.2)		34 (32.4)	16 (45.7)	18 (25.7)	
Chronic hypertension, n (%)	26 (6.3)	2 (4.8)	24 (6.5)	0.67	1 (1.4)	0 (0.0)	1 (2.9)	1.00
Family history of diabetes, n (%)	95 (22.9)	12 (28.6)	83 (22.3)	0.36	17 (16.2)	11 (31.4)	6 (8.6)	0.003
History of GDM, n (%)	11 (2.7)	4 (9.5)	7 (1.9)	0.004	9 (8.6)	7 (20.0)	2 (2.9)	0.01
GLOW trial arms		. ,						
Intervention	NA	NA	NA		55 (52.4)	18 (51.4)	37 (52.9)	0.89
Usual care	NA	NA	NA		50 (47.6)	17 (48.6)	33 (47.1)	

Table S2. Participant characteristics in the validation sets 1 (a random sample in the PETALS cohort) and 2 (a nested case-control study within the GLOW trial)^a

BMI, body mass index; GDM, gestational diabetes; GLOW, Gestational Weight Gain and Optimal Wellness; NA, not applicable.

**P* values for differences between women with and without GDM were obtained by student's t-test for continuous variables and Chi-square or Fisher's exact test for categorical variables.

[†]Non-Asians were categorized as underweight (BMI <18.5 kg/m²), normal weight (18.5–24.9 kg/m²), overweight (25.0–29.9 kg/m²), and obese (\geq 30.0 kg/m²). Asians were categorized as underweight (<18.5 kg/m²), normal weight (18.5–22.9 kg/m²), overweight (23.0–27.4 kg/m²), and obese (\geq 27.5 kg/m²).

Supplemental Figure 1. Treemap showing the distribution of metabolites among super pathway (in color) and their related sub-pathways (square) for the 144 metabolites used for statistical and bioinformatics analysis.

Each number corresponds to the number of metabolites within each sub-pathway.

Supplemental Figure 2. Radar plots showing the univariate associations of individual metabolite within each pathway at A) 10-13 and B) 16-19 weeks of gestation with risk of subsequent gestational diabetes in the PETALS nested case-control discovery set.

Red circle represents odds ratio (OR) of 1; blue circle represents adjusted OR of GDM risk associated with each metabolite after adjusting for covariates (age at delivery, race/ethnicity, family history of diabetes, chronic hypertension, history of gestational diabetes, pre-pregnancy body mass index, and gestational age at blood collection); and grey area represents 95% confidence interval.

*P-value after FDR adjustment <0.05.

Supplemental Figure 3. Univariate analysis: Individual metabolites at gestational weeks 10-13 and 16-19 significantly associated with risk of gestational diabetes in the PETALS nested case-control discovery set^{*}

*Adjusted for maternal age at delivery, race/ethnicity, family history of diabetes, chronic hypertension, history of gestational diabetes, pre-pregnancy body mass index, and gestational age at blood collection.

Metabolites in the plot were ordered based on the significance level of P-value for positive and inverse associations at each time window, respectively.

					P-value	FDR
	Xanthine			⊦- ∎1	0.003	0.029
	Citramalic acid			⊢-⊞ 1	0.003	0.029
	Phenylalanine			⊢⊞ 1	0.010	0.036
	Citrulline			⊢⊞ 1	0.013	0.036
Ge	Histidine			⊢ ∎1	0.013	0.036
sta	Glucose			} ₩ 1	0.015	0.036
itio	Lactic acid			⊢∎→	0.018	0.037
nal	Alanine			┝╌╋╌┤	0.028	0.047
Мe	ß-tocopherol			₩	0.030	0.047
ěk	Isoleucine			· _ ·	0.034	0 048
s →	N acetylputrescine			· _ ·	0.040	0.049
<u>-</u>	2-3-Dihydroxybutanoic acid			·	0.045	0.049
ω	Glycerol				0.048	0.049
	Kynurenine				0.048	0.049
	Ribonic acid				0.049	0.049
	Pyrrole-2-carboxylic acid				0.024	0.045
				∟ ▲1	0.002	0.012
	Alpha aminoadinic acid				0.002	0.012
	Myristic acid				0.002	0.012
	Glutamic acid				0.002	0.012
	Glycerol			· • ·	0.003	0.012
	Glucose				0.003	0.012
	Citrulline				0.003	0.012
					0.003	0.012
					0.003	0.012
				· ↓ ·	0.004	0.012
	D eruthro sphingosine				0.003	0.017
Q	b-eryuno springosine				0.008	0.017
est	2-3-dibydroxybutanoic acid				0.000	0.017
atic	2-0-diffydroxybdiariole acid				0.009	0.017
na	Salicylic acid				0.010	0.020
×					0.012	0.022
eek					0.013	0.022
ís 1	Arachildic acid				0.015	0.023
ې ا-					0.016	0.024
9	Aspartic acid				0.018	0.025
	Capile acid				0.022	0.030
					0.023	0.031
	Citramelia acid				0.032	0.040
					0.037	0.044
					0.043	0.046
	Giucuronic acid				0.044	0.046
	Histidine				0.045	0.046
	Aantnine				0.046	0.046
	Giycine		<u> </u>	₩	0.046	0.046
		l .			0.005	0.015
	Allantoic acid				0.008	0.017
		0.1	C)	10	

Supplemental Figure 4. Multivariate ChemRICH enrichment plots depicturing all pathways identified at A) 10-13 weeks and 2) 16-19 weeks of gestation in the PETALS nested case-control discovery set

Red bars, upregulation; green bars, downregulation. Dashed lines: P < 0.05 corresponds to $-\log 10$ of P-value > 1.3 for upregulated pathways and $\log 10$ of P-value < -1.3 for downregulated pathways.

Metabolites	Adjusted OR (95% CI) [†]	P-value	FDR	
Positive associations				
Creatine	1.63 (1.06, 2.49)	0.025	0.695	
Fructose	1.61(1.04, 2.49)	0.034	0.695	
N-acetylmannosamine	1.63(1.03, 2.56)	0.037	0.695	
Myristic acid	1.54 (1.02, 2.31)	0.038	0.695	
Phosphate	1.62 (1.02, 2.57)	0.042	0.695	
Uracil	1.64 (1.01, 2.66)	0.045	0.695	
Inverse associations				
Enolpyruvate	0.64 (0.43, 0.96)	0.030	0.695	

Table S3. Univariate analysis: Changes in individual metabolites from gestational weeks 10-13 to 16-19 significantly associated with risk of gestational diabetes in the PETALS nested case-control discovery set^{*}

*Changes in metabolite concentrations were assessed by the ratio of metabolite concentrations at study clinic visit 2 (gestational weeks 16-19) divided by the concentrations at study clinic visit 1 (gestational weeks 10-13).

[†]Adjusted for maternal age at delivery, race/ethnicity, family history of diabetes, pre-existing hypertension, history of gestational diabetes, pre-pregnancy body mass index, and the difference in gestational age at blood collection between study clinical visits 1 and 2.

Time window	Pathway	P-value*	FDR	Hits	Metabolite hits	Key metabolite †
Gestational	Inverse association					
weeks 10-13	Acids, acyclic	0.024	0.118	1	Pyrrole-2-carboxylic acid	Pyrrole-2-carboxylic acid
	Positive association					
	Amino acids, acidic	0.031	0.129	3	Aspartic acid, glutamic acid, N-acetylaspartic acid	Glutamic acid
	Amino acids, aromatic	0.011	0.118	3	Phenylalanine, tryptophan, tyrosine	Phenylalanine
	Indoles	0.019	0.118	3	Indole-3-acetate, indole-3-lactate, indoxyl sulfate	Indole-3-acetate
	Polyamines	0.040	0.143	1	N-acetylputrescine	N-acetylputrescine
	Purinones	0.0005	0.011	3	Hypoxanthine, uric acid, xanthine	Xanthine
	Pyrimidines	0.017	0.118	4	5,6-dihydrouracil, thymine, uracil, uridine	Uracil
Gestational	Inverse association					
weeks 16-19	Amides	0.008	0.041	1	Allantoic acid	Allantoic acid
	Positive association					
	Acids, carbocyclic	0.030	0.074	4	3-(4-hydroxyphenyl)propionic acid, 4-hydroxyphenylacetic acid, hydrocinnamic acid, quinic acid	Hydrocinnamic acid
	Amino acids, basic	0.007	0.041	4	Asparagine, glutamine, lysine, ornithine	Glutamine
	Amino acids, other	0.012	0.041	8	5-hydroxynorvaline, alanine, beta-alanine, citrulline, glycine, kynurenine, serine, threonine	Citrulline
	Amino alcohols	0.008	0.041	1	D-erythro-sphingosine	D-erythro-sphingosine
	Glucuronates	0.044	0.092	1	Glucuronic acid	Glucuronic acid
	Guanidines	0.023	0.063	1	Creatine	Creatine
	Hexoses	0.012	0.041	6	6-deoxyglucose, fructose, fucose, glucose, levoglucosan	Levoglucosan
	Indoles	0.003	0.041	3	Indole-3-acetate, indole-3-lactate, indoxyl sulfate	Indole-3-acetate
	Purinones	0.011	0.041	3	Hypoxanthine, uric acid, xanthine	Xanthine
	Pyrimidines	0.010	0.041	4	5,6-dihydrouracil, thymine, uracil, uridine	Uracil
	Sugar acids	0.018	0.054	4	2,3-dihydroxybutanoic acid, galactonic acid, glyceric acid, saccharic acid	2,3-dihydroxybutanoic acid
	Unsaturated fatty acids	0.043	0.092	4	Arachidonic acid, isolinoleic acid, linoleic acid, oleic acid	Isolinoleic acid

Table S4. The putative pathways linking metabolites at gestational weeks 10-13 and 16-19 to risk of gestational diabetes using the multivariate ChemRICH analysis in the PETALS nested case-control discovery set.

*The P value of each metabolite pathway was obtained by the Kolmogorov-Smirnov test after false discovery rate adjustment. †The most significant metabolite within that pathway.

Supplemental Figure 5. Model optimization of LASSO regression models for the selection of multimetabolite panels at gestational weeks 10-13 (A) and 16-19 (B) in the PETALS nested case-control discovery set.

Dotted lines on the left highlighted (A) 23 features (17 metabolites^{*} and 6 conventional risk factors[†]) and (B) 19 features (13 metabolites[‡] and 6 conventional risk factors[†]) that generated the highest area under the curve (AUC) statistics. Dotted lines on the right indicated the marker for AUC within one standard error of the highest AUC.

^{*}The 17-metabolite panel included: 1-5 anhydroglucitol, 1-monoolein, 2-3-dihydroxybutanoic acid, 2-hydroxyglutaric acid, 5-6-dihydrouracil, alanine, alpha aminoadipic acid, beta alanine, beta-sitosterol, cellobiose, citramalic acid, citric acid, lactic acid, N-acetylputrescine, β -tocopherol, uric acid, and urea.

[†]Included age at delivery, family history of diabetes, chronic hypertension, history of gestational diabetes, pre-pregnancy body mass index, and fasting serum glucose.

[‡]The 13-metabolite panel included: 1-5 anhydroglucitol, 2-3-dihydroxybutanoic acid, 2 aminobutyric acid, alpha aminoadipic acid, arachidic acid, aspartic acid, citric acid, hydrocinnamic acid, lauric acid, oleic acid, quinic acid, uracil, uridine.

	Discovery Set ¹		Validati	on Set 1 ²	Validation Set 2 ³	
	PPV	NPV	PPV	NPV	PPV	PPV
Gestational weeks 10-13						
Model 1 (conventional factors) ⁴	0.700	0.774	0.479	0.853	0.655	0.789
Model 2 (metabolites) ⁵	0.677	0.855	0.721	0.952	0.794	0.887
Model 3 (conventional + metabolites) ⁶	0.720	0.913	0.706	0.890	1.000	0.959
Gestational weeks 16-19						
Model 1 (conventional factors) ⁴	0.457	0.855	0.500	0.917	NA	NA
Model 2 (metabolites) ⁷	0.947	0.799	0.879	0.938	NA	NA
Model 3 (conventional + metabolites) ⁶	0.810	0.844	0.857	0.886	NA	NA

Table S5. Predictive performance of multi-metabolite panels at gestational weeks 10-13 and 16-19 beyond conventional risk factors for gestational diabetes using LASSO regression algorithms

LASSO, least absolute shrinkage and selection operator; NA, not applicable; NPV, negative predictive value; PPV, positive predictive value.

¹Discovery set was a matched case-control study of 91 GDM cases and 180 non-GDM controls in the Pregnancy Environment and Lifestyle Study (PETALS) cohort.

²Validation set 1 was a random sample of 42 GDM and 372 non-GDM women in the PETALS cohort.

³Validation set 2 was a case-control study of 30 GDM cases and 60 non-GDM controls in the GestationaL Weight Gain and Optimal Wellness (GLOW) randomized controlled trial.

⁴Model 1 included conventional risk factors: age, race/ethnicity, family history of diabetes, pre-existing hypertension, history of gestational diabetes, pre-pregnancy body mass index, and gestational age at blood collection, and serum glucose levels.

⁵Model 2 included a 17-metabolite panel selected by LASSO regression at gestational weeks 10-13 (1-5 anhydroglucitol, 1-monoolein, 2-3-dihydroxybutanoic acid, 2-hydroxyglutaric acid, 5-6-dihydrouracil, alanine, alpha aminoadipic acid, beta alanine, beta-sitosterol, cellobiose, citramalic acid, citric acid, lactic acid, N-acetylputrescine, β -tocopherol, uric acid, and urea).

⁶Model 3 included conventional risk factors in Model 1 and metabolites in Model 2.

⁷Model 2 included a 13-metabolite panel selected by LASSO regression at gestational weeks 16-19 (1-5 anhydroglucitol, 2-3-dihydroxybutanoic acid, 2 aminobutyric acid, alpha aminoadipic acid, arachidic acid, aspartic acid, citric acid, hydrocinnamic acid, lauric acid, oleic acid, quinic acid, uracil, uridine).