American Diabetes Association
Browse
DOCUMENT
Supplemental_TEDDY_Study_Group_26_Apr_2020.pdf (92.78 kB)
DATASET
Supplemental_Tables.xlsx (168.52 kB)
IMAGE
Supplemental_Figure.tiff (3.35 MB)
1/0
3 files

Plasma metabolome and circulating vitamins stratified onset age of an initial islet autoantibody and progression to type 1 diabetes: the TEDDY study

figure
posted on 2020-10-26, 19:41 authored by Ada AdminAda Admin, Qian Li, Xiang Liu, Jimin Yang, Iris Erlund, Åke Lernmark, William Hagopian, Marian Rewers, Jin-Xiong She, Jorma Toppari, Anette-G. Ziegler, Beena Akolkar, Jeffrey P. Krischer, TEDDY Study Group
Children’s plasma metabolome, especially lipidome reflects gene regulation and dietary exposures, heralding the development of islet autoantibodies (IA) and type 1 diabetes (T1D). The TEDDY study enrolled 8676 newborns by screening HLA-DR-DQ genotypes at six clinical centers in four countries; profiled metabolome and measured concentrations of ascorbic acid, 25-hydroxyvitamin D (25(OH)D), erythrocyte membrane fatty acids following birth until IA seroconversion under nested case-control design. We grouped children having an initial autoantibody only against insulin (IAA-first) or glutamic acid decarboxylase (GADA-first) by unsupervised clustering of temporal lipidome, identifying a subgroup of children having early onset of each initial autoantibody, i.e., IAA-first by 12 months and GADA-first by 21 months, consistent with population-wide early seroconversion age. Differential analysis showed that infants having reduced plasma ascorbic acid and cholesterol experienced IAA-first earlier, while early onset of GADA-first was preceded by reduced sphingomyelins at infancy. Plasma 25(OH)D prior to either autoantibody was lower in T1D progressors compared to non-progressors, with simultaneous lower diglycerides, lysophosphatidylcholines, triglycerides, alanine before GADA-first. Plasma ascorbic acid and 25(OH)D at infancy were lower in HLA-DR3/DR4 children among IA cases but not in matched controls, implying gene expression dysregulation of circulating vitamins as latent signals for IA or T1D progression.

Funding

The TEDDY Study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535).

History

Usage metrics

    Diabetes

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC