Supplementary Methods

Culture of human embryonic kidney 293 (HEK293) cells. HEK293 cells were cultured in Dulbecco's Modified Eagle's Medium (Thermo Fisher Scientific) supplemented with 10\% fetal bovine serum and 1\% penicillin-streptomycin (Thermo Fisher Scientific) and incubated in 5\% CO_{2} at $37^{\circ} \mathrm{C}$.

Western blotting. HEK293 cells were transfected using FuGENE HD (Promega) with 500 $\mathrm{ng} / \mathrm{mL}$ of plasmid pcDNA3.1-HA-CCND1 (Addgene, 172649) and $500 \mathrm{ng} / \mathrm{mL}$ of DYRK1B plasmid (empty vector [EV], wild-type [WT] or with a P/LP-null variant) and they seeded in a poly-lysine coated 6 -well plate at a concentration of 0.5×10^{6} cells $/ \mathrm{mL} .48$ hours after transfection, the cells were harvested and the proteins were extracted using Pierce RIPA buffer (Thermo Fischer Scientific), supplemented with 1 mM dithiothreitol (Thermo Fischer Scientific) and protease and phosphatase inhibitors (Roche). The proteins were quantified using Pierce Rapid Gold BCA protein assay kit (Thermo Fischer Scientific). $20 \mu \mathrm{~g}$ of proteins were denatured at $95{ }^{\circ} \mathrm{C}$ for 5 minutes with Laemmli buffer $4 \times$ (Thermo Fischer Scientific) and loaded on a 10% precast gel (Bio-Rad) for electrophoresis. After migration, the proteins were transferred on a nitrocellulose membrane (GE Healthcare) and the non-specific sites on the membranes were blocked for 1 hour in the blocking buffer (Tris buffered saline [TBS], 0.1% Tween 20, 5% bovine serine albumin). The membranes were then incubated overnight at $4^{\circ} \mathrm{C}$ with primary antibodies: DYRK1B (\#5672 Cell signaling Technology; diluted at 1/1000 in the blocking buffer), phospho-CCND1 (at p.T286 amino acid) (\#3300 Cell signaling Technology; diluted at $1 / 1000$ in the blocking buffer) and CCND1 (Origene; diluted at $1 / 2000$ in the blocking buffer), following by fluorescent anti-rabbit secondary antibody (SA5-35571 Thermo Fischer Scientific; diluted at $1 / 5000$ in the blocking buffer) and fluorescent anti-mouse secondary antibody (\#35518 Thermo Fischer Scientific; diluted at $1 / 5000$ in the blocking buffer). Nitrocellulose membranes were revealed using the Odyssey CLx imaging system (LI-COR

Bioscience). β-actin was used as a loading control to normalize data (\#3700 Cell Signaling Technology; diluted at 1/4000 in the blocking buffer).

Table S1. Clinical data of participants included in the RaDiO study.

	Adults				Children/adolescents	
Adiposity	Obesity	Overweight (with no obesity)	Normalweight	NA	Obesity	Normal-weight
N	1,526	2,859	2,875	8	1,043	1,042
Sex	$\begin{aligned} & \text { M:514 / } \\ & \text { F:1,012 } \end{aligned}$	$\begin{gathered} \mathrm{M}: 1,823 / \\ \mathrm{F}: 1,036 \end{gathered}$	$\begin{gathered} M: 1,252 / \\ F: 1,623 \end{gathered}$	M:3/F:5	M:486 / F:557	M:540 / F:502
Age at investigation (years)	51 ± 13	54 ± 12	48 ± 12	45 ± 8.4	13 ± 2.1	18 ± 3.3
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)	37 ± 7.3	27 ± 1.5	22 ± 1.9	NA	31 ± 5.4	20 ± 2.3
Type 2 Diabetes	537	1,144	497	1	NA	NA
Fasting glucose ($\mathrm{mmol} / \mathrm{L}$)	6.4 ± 2.4	6.5 ± 2.4	8.3 ± 3	5.2 ± 0.3	NA	NA

Data are the mean \pm SD or numbers (\%)
$B M I$, body mass index; \boldsymbol{F}, female; \boldsymbol{M}, male; $\boldsymbol{N A}$, not available.

Table S2. Rare DYRK1B variants identified in the RaDiO study.

Rare variants in DYRK1B (NM_004714.3)	Position (hg19)	MAC in RaDiO	MAC in GnomAD	REVEL score	ACMG criteria	Category
c.7G>A, p.V3l	19:40322501	1	7	0.03	-	Neutral
c.14C>T, p.P5L	19:40322494	1	1	0.14	PS3, PM2	P/LP
c.80G>A, p.R27Q	19:40321407	2	6	0.07	-	Neutral
c.92G>C, p.R31P	19:40321395	1	0	0.24	PM2	Neutral
c.118G>T, p.A40S	19:40321369	1	0	0.10	PM2	Neutral
c.170A>G, p.K57R	19:40321317	1	3	0.19	PM2	Neutral
c.202A>C, p.K68Q	19:40321185	1	5	0.23	PS3, PP5	Neutral
c.209G>A, p.R70Q	19:40321178	1	17	0.17	PS3	Neutral
c.236C>T, p.S79L	19:40321151	1	2	0.14	PM2	Neutral
c.256_258del, p.K86del	19:40321129	1	0	-	PS3, PM2, PM4	P/LP
c.305G>A, p.R102H	19:40321082	2	8	0.06	PS3, PM5	P/LP
c.359G>T, p.G120V	19:40321028	1	0	0.97	PS3-null, PM2, PP3	P/LP-null
c.391C>T, p.H131Y	19:40320649	1	0	0.39	PS3, PM2	P/LP
c.470G>A, p.R157Q	19:40320570	1	1	0.31	PS3, PM2	P/LP
c.500C>T, p.T167M	19:40320540	1	10	0.36	PS3	Neutral
c.506T>G, p.M169R	19:40320534	2	0	0.39	PM2	Neutral
c.515A>G, p.Y172C	19:40320525	1	3	0.40	PM2	Neutral
c.526C>A, p.L176M	19:40319218	1	16	0.18	PS3	Neutral
c.536A>T, p.H179L	19:40319208	1	0	0.65	PS3-null, PM2, PP3	P/LP-null
c.668C>T, p.T223M	19:40319076	3	30	0.40	PS3	Neutral
c.746A>G, p.N249S	19:40318998	2	1	0.29	PM2	Neutral
c.775G>A, p.D259N	19:40318969	1	0	0.90	PS3-null, PM2, PP3	P/LP-null
c.845C>T, p.P282L	19:40318259	1	0	0.86	PS3-null, PM2, PP3	P/LP-null
c.967A>G, p.N323D	19:40318053	1	0	0.23	PS3, PM2	P/LP
c.971G>T, p.R324L	19:40318049	1	5	0.21	PS3	Neutral
c.1003G>A, p.A335T	19:40318017	4	3	0.09	PM2	Neutral
c.1030C>T, p.R344C	19:40317990	2	8	0.42	-	Neutral
c.1031G>A, p.R344H	19:40317989	2	14	0.26	-	Neutral
c.1045C>T, p.R349W	19:40317975	1	1	0.23	PS3-null, PM2	P/LP-null
c.1046G>A, p.R349Q	19:40317974	1	2	0.09	PM2	Neutral
c.1054G>A, p.G352R	19:40317966	1	0	0.15	PS3, PM2	P/LP
c.1055G>C, p.G352A	19:40317965	5	155	0.06	-	Neutral
c.1057G>T, p.G353C	19:40317963	1	1	0.25	PS3, PM2	P/LP
c.1072C>T, p.R358*	19:40317948	1	0	-	PVS1, PS3-null, PM2	P/LP-null
c.1073G>A, p.R358Q	19:40317947	1	4	0.06	PS3, PM2	P/LP
c.1079C>A, p.T360K	19:40317941	1	0	0.07	PS3, PM2	P/LP
c.1111G>A, p.G371R	19:40317612	3	2	0.19	PS3, PM2	P/LP
c.1111G>C, p.G371R	19:40317612	1	1	0.20	PS3, PM2	P/LP
c.1196C>A, p.A399D	19:40317527	1	0	0.08	PM2	Neutral
c.1208G>A, p.R403H	19:40317515	1	1	0.16	PM2	Neutral
c.1229G>A, p.R410H	19:40317494	1	0	0.48	PS3, PM2	P/LP
c.1252G>A, p.A418T	19:40317471	9	22	0.03	-	Neutral
c.1285G>A, p.G429S	19:40317438	3	103	0.06	-	Neutral
c.1285G>C, p.G429R	19:40317438	3	5	0.09	-	Neutral
c.1295G>A, p.R432H	19:40317428	1	1	0.10	PM2	Neutral
c.1328C>T, p.P443L	19:40317395	1	0	0.06	PM2	Neutral
c.1336A>G, p.S446G	19:40317387	3	11	0.07	-	Neutral
c.1341T>A, p.S447R	19:40317382	1	0	0.28	PS3, PM2	P/LP
c.1349C>T, p.T450I	19:40317374	1	0	0.19	PM2	Neutral
c.1358C>T, p.A453V	19:40317365	1	5	0.09	-	Neutral
c.1386C>G, p.S462R	19:40317337	5	101	0.15	-	Neutral
c.1414G>A, p.G472S	19:40316924	2	0	0.25	PM2	Neutral
c.1441C>T, p.R481W	19:40316897	1	0	0.18	PM2	Neutral
c.1450C>T, p.R484C	19:40316888	1	7	0.24	-	Neutral
c.1463G>A, p.R488Q	19:40316875	1	14	0.13	-	Neutral
c.1469G>T, p.C490F	19:40316869	1	0	0.06	PM2	Neutral
c.1470T>G, p.C490W	19:40316868	3	8	0.21	-	Neutral
c.1481G>A, p.G494E	19:40316857	1	11	0.11	-	Neutral
c.1675C>T, p.P559S	19:40316570	1	2	0.09	PM2	Neutral

c.1732C $>$ T, p.P578S	$19: 40316513$	31	294	0.05	-	Neutral
c.1742C>T, p.A581V	$19: 40316503$	1	2	0.16	PM2	Neutral
c.1799G>A, p.R600H	$19: 40316446$	1	5	0.06	-	Neutral
c.1823A $>$ T, p.D608V	$19: 40316422$	1	0	0.14	PM2	Neutral
c.1840C>A, p.P614T	$19: 40316405$	2	38	0.05	-	Neutral
c.1855C>T, p.R619C	$19: 40316390$	1	6	0.04	PS3-null	Neutral

$\boldsymbol{A C M G}$, American College of Medical Genetics and Genomics; GnomAD, genome aggregation database (version 2.1.1); MAC, minor allele count; $\boldsymbol{P} / \boldsymbol{L P}$, pathogenic or likely pathogenic variant; $\boldsymbol{P} / \mathbf{L P}$-null, fully inhibitory (i.e. null) P/LP variant; PM-, moderate pathogenicity ACMG criterion; $\boldsymbol{P P}$-, supporting pathogenicity criterion; $\boldsymbol{P S}$-, strong pathogenicity ACMG criterion; PVS-, very strong pathogenicity ACMG criterion; $\boldsymbol{R E V E L}$, rare exome variant ensemble learner.

Table S3. Null mutations of DYRK1B (NM_004714.3) detected in 52K and TOPMed studies.

Chr	Position (Hg38)	Mutation	52K	TOPMed
19	40321205	c.184-3_184-2insGGGC		X
19	40318298	c.808-2A>C		X
19	40318281	c.823C>T, p.Gln275Ter	X	X
19	40316889	c.1449C>G, p.Tyr483Ter	X	X
19	40316876	c.1462C>T, p.Arg488Ter		X
19	40316713	c.1528_1531del, p.Gln511ArgfsTer52		X
19	40316611	c.1633del, p.Gln545SerfsTer19		X
19	40316611	c.1633_1634insC, p.Gln545ProfsTer30		X
19	40316491	c.1753_1754insC, p.Gln585ProfsTer23		X

Among these variants, two null variants from 52 K and seven null variants from TOPMed were kept for further association analysis with type 2 diabetes risk.

Fig. S1. Effect of neutral DYRK1B variants on Wnt signaling, according to luciferase assays

The figures illustrate fold changes in luciferase activity, normalized to β-galactosidase, within HEK293 cells that were either transfected or left non-transfected (designated as the nontransfected [NT] condition). This transfection involved the use of wild-type or mutated DYRK1B plasmids, along with the TOPflash (i.e. TCF reporter) plasmid. The response was measured across varying concentrations of WNT3A ($0,10,30$, and $100 \mathrm{ng} / \mathrm{mL}$), relative to the baseline activity observed with the wild-type DYRK1B. Positive and negative control conditions, i.e. WT and Y271/273F, were respectively represented in grey and orange. Data are the mean \pm SEM of the fold changes from four independent experiments performed in technical triplicates. The effect of each $D Y R K 1 B$ variant was analysed using linear regression model (with estimates and p-values on the right) and confirmed with ANOVA model ($* P<0.05 ; * * P<0.01$; *** $P<0.001$ versus wild-type). $\boldsymbol{N T}$, not transfected; $\boldsymbol{W} \boldsymbol{T}$, wild-type.

Fig S2. Effect of P/LP-null DYRK1B variants on CCND1 by phosphorylation by Western blotting

The figures illustrate the protein expression of DYRK1B, CCND1 and p-CCND1 within transfected HEK293 cells. This transfection involved the use of empty vector or wild-type or P/LP-null DYRK1B plasmids, along with CCND1 plasmid. Four independent experiments were performed for each P/LP-null variant. $\boldsymbol{E V}$, empty vector; $\boldsymbol{W} \boldsymbol{T}$, wild-type; $\boldsymbol{C C N D}$, cyclin D1; p-CCND1, CCND1 phosphorylated.

Fig S3. Co-segregation of p.H179L and p.R358* with metabolic traits in two families

The figure shows the co-segregation of two P/LP-null variants (p.H179L and p.R358*) with metabolic traits in two families. The arrows indicate the individual sequenced in the RaDiO study. Family members were sequenced by Sanger sequencing. Obesity was defined as BMI $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$, Type 2 diabetes as fasting glucose $\geq 7.0 \mathrm{mmol} / 1$ and $/$ or used treatment of hyperglycemia, low HDL levels as $\leq 1.04 \mathrm{mmol} / 1 \mathrm{in}$ men and $\leq 1.30 \mathrm{mmol} / \mathrm{l}$ in women, high TG levels as $\geq 1.70 \mathrm{mmol} / 1$ and hypertension by systolic blood pressure $\geq 130 \mathrm{mmHg}$ or diastolic blood pressure $\geq 85 \mathrm{mmHg}$. $\boldsymbol{N N}$, wild-type; $\boldsymbol{H} \boldsymbol{L D}$, high-density lipoprotein; $\boldsymbol{T G}$, triglyceride.

