## Optimal number of steps per day to prevent all-cause mortality in people with prediabetes and diabetes

Jesus del Pozo-Cruz, PhD; Francisco Alvarez-Barbosa, PhD; Daniel Gallardo-Gomez, MSc; Borja del Pozo Cruz, PhD

## SUPPLEMENTAL MATERIALS

**Table S1.** Baseline characteristics of the participants in the study (n=1194 participants with pre-diabetes; n=493 participants with diabetes)

**Figure S1.** Dose–response association (Adjusted<sup>a</sup> hazard ratios—solid lines and associated 95% confidence interval band—dashed lines) between accelerometer-derived steps per day and all-cause mortality in participants with pre-diabetes or diabetes (n=1687; events=338).

**Figure S2.** Dose–response association (Adjusted<sup>a</sup> hazard ratios—solid lines and associated 95% confidence interval band—dashed lines) between accelerometer-derived steps per day and all-cause mortality in participants with pre-diabetes (n=1102; events=183) and diabetes (n=454; events=122) and with 3 or more days of valid accelerometry.

**Figure S3.** Dose–response association (Adjusted<sup>a</sup> hazard ratios—solid lines and associated 95% confidence interval band—dashed lines) between accelerometer-derived steps per day and CVD mortality in participants with pre-diabetes (n=1194; events=49) and diabetes (n=493; events=36).

| pre-diabetes; n=493 participants with diabetes)                      |                       |                  |
|----------------------------------------------------------------------|-----------------------|------------------|
|                                                                      | Pre-diabetes (n=1194) | Diabetes (n=493) |
| Age (years)                                                          | 54.7 (17.9)           | 61.6 (13.8)      |
| Sex, female (%)                                                      | 528 (44.2)            | 243 (49.3)       |
| Ethnicity (%)                                                        |                       |                  |
| Mexican American                                                     | 253 (21.2)            | 120 (24.3)       |
| Other Hispanic                                                       | 33 ( 2.8)             | 12 ( 2.4)        |
| Non-hispanic, white                                                  | 549 (46.0)            | 183 (37.1)       |
| Non-hispanic, black                                                  | 303 (25.4)            | 164 (33.3)       |
| Other                                                                | 56 ( 4.7)             | 14 ( 2.8)        |
| Education (%)                                                        |                       |                  |
| Less Than 9th Grade                                                  | 159 (13.9)            | 102 (20.8)       |
| 9-11th Grade                                                         | 179 (15.6)            | 86 (17.5)        |
| High School Grad/GED or Equivalent                                   | 291 (25.3)            | 138 (28.1)       |
| Some College or Associated Arts Degree                               | 334 (29.1)            | 112 (22.8)       |
| College Graduate or above                                            | 185 (16.1)            | 53 (10.8)        |
| Body Mass Index (Kg/m <sup>2</sup> )                                 | 30.2 (7.3)            | 32.3 (7.7)       |
| Alcohol (grams)                                                      | 9.59 (24.69)          | 5.62 (18.58)     |
| Cotinine (ng/mL)                                                     | 5.71 (0.52)           | 7.36 (1.81)      |
| Diet quality, HEI score (1-100)                                      | 52.0 (13.6)           | 55.0 (13.1)      |
| Glycohemoglobin (%)                                                  | 5.71 (0.52)           | 7.36 (1.81)      |
| Diabetes medication (%)                                              | 0.08 (0.27)           | 0.57 (0.50)      |
| Major chronic conditions, no (%)                                     | 566 (49.0)            | 166 (33.8)       |
| Accelerometer varaibles                                              |                       |                  |
| Steps per day (n)                                                    | 8949.6 (4171.8)       | 7151.2 (3930.6)  |
| Valid daily wear time (min)                                          | 873.7 (147.5)         | 850.8 (142.1)    |
| Valid wear days (n)                                                  | 5.5 (1.7)             | 5.6 (1.7)        |
| Values are shown as mean (SD) unless otherwise specified.            |                       |                  |
| HEI, Healthy Eating Index. Lower scores represent lower diet quality |                       |                  |

**Table S1.** Baseline characteristics of the participants in the study (n=1194 participants with pre-diabetes; n=493 participants with diabetes)

**Figure S1.** Dose–response association (Adjusted<sup>a</sup> hazard ratios—solid lines and associated 95% confidence interval band—dashed lines) between accelerometer-derived steps per day and all-cause mortality in participants with pre-diabetes or diabetes (n=1687; events=338).



Participants with pre-diabetes and diabetes

<sup>a</sup>Adjusted for age, sex, ethnicity, education, smoking, alcohol, diet, diabetes medication, and valid daily wear time. To prevent over-influential outliers from affecting the analyses, values in all step-based metrics that were greater than the 99<sup>th</sup> percentile of the variable distribution were top-coded (i.e., they were substituted with the value of the 99<sup>th</sup> percentile) and values that were below the 1<sup>st</sup> percentile of the variable distribution were bottom-coded (i.e., they were replaced with the value of the 1<sup>st</sup> percentile). Darker colors in the lower bars represent a higher sample clustering. Dose-response associations were assessed with restricted cubic splines with knots at 10<sup>th</sup> (reference), 50<sup>th</sup>, and 90<sup>th</sup> centiles of the distribution of the exposure of interest. Hazard ratios are in logarithmic scale.

**Figure S2.** Dose–response association (Adjusted<sup>a</sup> hazard ratios—solid lines and associated 95% confidence interval band—dashed lines) between accelerometer-derived steps per day and all-cause mortality in participants with pre-diabetes (n=1102; events=183) and diabetes (n=454; events=122) and with 3 or more days of valid accelerometry.



<sup>a</sup>Adjusted for age, sex, ethnicity, education, smoking, alcohol, diet, diabetes medication, and valid daily wear time. To prevent over-influential outliers from affecting the analyses, values in all step-based metrics that were greater than the 99<sup>th</sup> percentile of the variable distribution were top-coded (i.e., they were substituted with the value of the 99<sup>th</sup> percentile) and values that were below the 1<sup>st</sup> percentile of the variable distribution were bottom-coded (i.e., they were replaced with the value of the 1<sup>st</sup> percentile). Darker colors in the lower bars represent a higher sample clustering. Dose-response associations were assessed with restricted cubic splines with knots at 10<sup>th</sup> (reference), 50<sup>th</sup>, and 90<sup>th</sup> centiles of the distribution of the exposure of interest. Hazard ratios are in logarithmic scale.

**Figure S3.** Exploratory dose–response association (Adjusted<sup>a</sup> hazard ratios—solid lines and associated 95% confidence interval band—dashed lines) between accelerometer-derived steps per day and CVD mortality in participants with pre-diabetes (n=1194; events=49) and diabetes (n=493; events=36).



The associations between between accelerometer-derived steps per day and CVD mortality was conducted as an exploratory analysis. Fine and Gray models were used to account for competing risks with other causes of mortality. <sup>a</sup>Adjusted for age, sex, ethnicity, education, smoking, alcohol, diet, diabetes medication, and valid daily wear time. To prevent over-influential outliers from affecting the analyses, values in all step-based metrics that were greater than the 99<sup>th</sup> percentile of the variable distribution were top-coded (i.e., they were substituted with the value of the 99<sup>th</sup> percentile) and values that were below the 1<sup>st</sup> percentile of the variable distribution were replaced with the value of the 1<sup>st</sup> percentile). Darker colors in the lower bars represent a higher sample clustering. Doseresponse associations were assessed with restricted cubic splines with knots at 10<sup>th</sup> (reference), 50<sup>th</sup>, and 90<sup>th</sup> centiles of the distribution of the exposure of interest. Hazard ratios are in logarithmic scale.