Supplemental Data Parabiosis.pdf (177.98 kB)

Chronic Antidiabetic Actions of Leptin: Evidence from Parabiosis Studies for a CNS-Derived Circulating Antidiabetic Factor

Download (177.98 kB)
posted on 03.08.2021, 15:51 by Alexandre A. da Silva, John E. Hall, Xuemei Dai, Zhen Wang, Mateus C. Salgado, Jussara M. do Carmo
We used parabiosis to determine whether the central nervous system (CNS)-mediated antidiabetic effects of leptin are mediated by release of a brain-derived circulating factor(s). Parabiosis was surgically induced at 4 weeks of age and an intracerebroventricular (ICV) cannula was placed in the lateral cerebral ventricles at 12 weeks of age for ICV infusion of leptin or saline vehicle. Ten days after surgery, food intake, body weight and blood glucose were measured for 5 consecutive days and insulin-deficiency diabetes was induced in all rats by a single streptozotocin (STZ) injection (40 mg/kg). Five days after STZ injection, leptin or vehicle was infused ICV for 7 days, followed by 5-day recovery period. STZ increased blood glucose and food intake. Chronic ICV leptin infusion restored normoglycemia in leptin-infused rats while reducing blood glucose by ~27% in conjoined vehicle-infused rats. This glucose reduction was caused mainly by decreased hepatic gluconeogenesis. Chronic ICV leptin infusion also reduced net cumulative food intake and increased GLUT4 expression in skeletal muscle in leptin/vehicle compared to vehicle/vehicle conjoined rats. These results indicate that leptin’s CNS-mediated antidiabetic effects are mediated, in part, by release into the systemic circulation of a leptin-stimulated factor(s) that enhances glucose utilization and reduces liver gluconeogenesis.


This study was supported by National Heart, Lung, and Blood Institute (P01 HL51971), National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK121411) and the National Institute of General Medical Sciences (P20 GM104357 and U54 GM115428) of the National Institutes of Health.